Inbetriebnahme Rotarnock 100

Versuchsaufbau

Bild 1: Versuchsaufbau Rotarnock 100

Geräte:

- Dell Laptop Latitude D810, Intel Pentium M Prozessor 1.73GHz, 1.00 GB RAM
- Kompakter Industrie PC EL5000, Intel Celeron M Prozessor 600MHz, 256 MB RAM, Profibusmodul IFC-PB PROFIBUS Master mit CAN Knoten SJA 1000
- Rotarnock 100 mit Profibusschnittstelle
- Cross Over Kabel
- Profibusleitung
- RS232 Leitung von SUB-D 9 polig auf SUB-D 25 polig

Software:

- Betriebssystem Laptop Microsoft Windows XP Version 2002 Service Pack 2
- Betriebssystem IPC Microsoft Windows CE 4.2
- Laufzeitsystem CoDeSys Version 2.3.5.8
- Winloc Version Winloc/32 V3.11

Winloc 32

Winloc 32 wird zu Konfiguration des Nockenschaltwerks verwendet. Mit diesem Softwaretool werden das Kommunikationsprofil und die Profibusadresse eingestellt. Des Weiteren können sämtliche Parametrierungen mit ihm vorgenommen werden. In diesem Test wurde Winloc 32 lediglich zum einstellen des Kommunikationsprofil und der Profibusadresse verwendet. Im Folgenden werden die dafür benötigten Schritte näher erläutert.

Bild 2: Datentransfer Rotarnock zu Datei

Im ersten Schritt werden die Parameter aus dem Rotarnock über die RS232-Schnittstelle in eine Datei übertragen. Hierzu wird das Programm Winloc 32 gestartet und der Menüpunkt Datei -> Transfer -> Transfer in Datei ausgewählt (siehe Bild 2). Es öffnet sich ein neues Eingabefenster indem ein Zieldateiname für die Daten eingegeben wird.

撞 Winloc/32 V3.11	Datei öffnen				? 🛛
Datei Extras Online Hilfe	Cushenin				
Neu	Suchen In:				
产 Oeffnen Ctrl+O		R100_2_PC.W			
Speichern	Recent		.00_d.WLC		
Speichern als	12	Upload1.WLC			
Alles Speichern	Desktop	1 - 1.12			
Schliessen					
📃 Upload Ctrl+U	Eigene Dateien				
Download Ctrl+D					
Terminal Ctrl+E					
🔀 Transfer 🔹 🕨	CDE206319				
Drucker Optionen		Dateiname:	R100_2_PC.WLC	_	Öffnen
Druck Vorschau	Netzwerkumgeb	Dateityp:	WinLoc-Dateien		Abbrechen
× Beenden	ung		Schreibgeschützt öffnen		Hilfe

Bild 3: Parameterdatei öffnen

Nachdem die Daten erfolgreich vom Nockenschaltwerk übertragen wurden, müssen diese Parameterdaten mit dem Winloc 32 geladen werden. Dazu wird der Menüpunkt Datei -> Oeffnen angewählt. Es öffnet sich ein neues Auswahlfenster (siehe Bild 3). In der Auswahlzeile wird der Pfad des Quellverzeichnisses eingegeben indem sich die abgespeicherte Parameterdatei befindet. Die abgespeicherte Datei anwählen und mit dem Schaltknopf "Öffnen" bestätigen. Dadurch wird das Konfigurationsprofil im Winloc 32 geladen.

🖬 Upload 2			
Programm 0	Speicher 115/1000		
<u> </u>	Gerätetyp Seriennummer	ROTARNOCK 100 34060147	☐ Hardware ☐ Software
K <u>o</u> nfiguration	Gebertyp Geberauflösung	absolute parallel 4096	☐ feste Parameter ✔ Wizard edierbar
<u>K</u> ommentar	fiktive Geberauflösung Drehrichtung	4096 Im Uhrzeigersinn	variable Parameter
:≊F Logik	Geberüberwachung Nullverschiebung	no O	Geratekonliguration
Analog	Art der TZK TZK Funktion	bitwise standard	
	Anzeigefaktor Profibus ID	9999 5	
	Bus operation mode	s7	
		Com. Profile	

Bild 4: Einstellen der Kommunikationsprofil und der Profibus ID

Im nächsten Schritt wird der der Auswahlpunkt "Konfiguration" mit einem Mausklick aktiviert. Es öffnet sich die das Konfigurationsmenü. Zuerst wird die Profibus ID eingestellt. In diesem Versuch wurde die Adresse 5 ausgewählt (siehe Bild 4). Nach der Einstellung von der Profibusadresse muss der "Bus opeeration mode" von "S7" auf "Com. Profile" eingestellt werden.

Bild 5: Download der Konfigurationsdaten zum Rotarnock 100

Nachdem das Kommunikationsprofil eingestellt ist müssen diesen Parameter wieder in das Nockenschaltwerk geschrieben werden. Hierzu wird der Menüpunkt Datei -> Download angewählt (siehe Bild 5). Nach erfolgreichem Download erscheint im Terminalfenster die Statusmeldung "Ok". Ist der Download erfolgreich abgeschlossen worden, kann Winloc 32 beendet werden. Die Parametrierung des Nockenschaltwerkes erfolgt über den Profibus.

CoDeSys-Einstellungen

Bild 6: Profibusschnittstelle in Steuerungskonfiguration einfügen

Für die Parametrierung des Nockenschaltwerks wird im CoDeSys-Projekt das Zielsystem PCMatic AP/AC ausgewählt. Sollte dieses Target im CoDeSys nicht vorhanden sein muss es zusätzlich mit dem Programm "InstallTarget" installiert werden.

Nachdem das Zielsystem eingestellt worden ist, wird unter der Registerkarte Ressourcen die Steuerungskonfiguration modifiziert. Zunächst wird an die Steuerungskonfiguration eine Profibusschnittstelle angehängt (siehe Bild 6).

Bild 7: Einfügen der Gerätebeschreibungsdatei

Im nächsten Schritt muss die Gerätebeschreibungsdatei vom Nockenschaltwerk an die Profibusschnittstelle eingefügt werden (siehe Bild 7). Die Gerätebeschreibungsdatei für das Nockenschaltwerk kann von der Internetseite der Firma Deutschmann (www.deutschmann.de) bezogen werden und muss ins aktuelle Target kopiert werden.

Bild 8: Einstellen des Kommunikationsprofils

Nachdem die Gerätedatei eingefügt worden ist, muss das Ein/Ausgangsmodule eingestellt werden. Wenn das in der Steuerungskonfiguration angefügte Gerät R100-PB (mit Para) anklickt, öffnet sich das Menü zum Einstellen der Ein/Ausgangsmodule (siehe Bild 8). In der Grundeinstellung sind alle 4 Module angehängt. Von diesen 4 Modulen müssen 3 Module entfernt werden. In diesem Versuch wurde das Kommunikationsmodul "KommProfil,No_Logic" verwendet. In diesem Kommunikationsprofil sind 13 Ein- (%IB0-12) und 13 Ausgangsbytes (%QB0-12) vorhanden. Die Ausgangsbytes werden zum parametrieren des Nockenschaltwerks verwendet. Die Eingangsbytes liefern die Status- und Istwerte des Nockenschaltwerks zurück.

Bild 9: Masteranfrage und Antwort Nockenschaltwerk

Das erste Byte der Masteranfrage ist die Auftragsnummer (siehe Bild 9). Damit das Nockenschaltwerk eine Masteranfrage bearbeiten kann, muss sich die Auftragsnummer, von der vorherigen Nummer unterscheiden. Mit dem zweiten Byte wird die Länge der zu übertragenen Daten angegeben. Es werden im Profibus vom Master an das Gateway (Slave) immer 13 Byte übertragen, jedoch sind nur die Parameter, die mit dem Längenbyte spezifiziert

werden gültig. (Gültige Parameter = Länge - 2). Mit dem Byte Auftragsart wird angegeben ob der Auftrag entweder einmalig (Wert=0) oder zyklisch (Wert=1) ausgeführt werden soll. Die Kodierung des Bytes Befehl kann der Befehlstabelle (siehe Bild 10) entnommen werden. Es ist darauf zu achten, dass der Befehlswert aus der Befehlstabelle in einen dezimalen Wert umgerechnet wird. Die nähere Erläuterung der einzelnen Befehle kann dem Dokument "Kommunikationsprofil für Nockenschaltwerke der Deutschmann Automation Seite 28-41" entnommen werden.

Befehlsname	Befehlswert	Bedeutung siehe Kapitel
GET_OUTPUT	0x01	2.5.1.1
GET_NEXT_CAM	0x03	2.5.1.3
GET_BACK_CAM	0x04	2.5.1.4
GET_IDLETIME	0x05	2.5.1.5
GET_POSITION	0x08	2.5.1.6
GET_SPEED	0x09	2.5.1.7
GET_STATUS	0x0A	2.5.1.8
GET_OUT_POS	0x0E	2.5.1.9
GET_DISPLAY	0x0F	2.5.1.10
GET_LOGIC	0x41	2.5.1.11
GET_DATA_EXIST	0x43	2.5.1.12
GET_GATEWAY_ID	0x44	2.5.1.13
GET_PARAMETER	0x45	2.5.1.14
GET_OUTPUT_NAME	0x46	2.5.1.15
GET_GATEWAY_DATA	0x47	2.5.1.16
GET_EEROM_BLOCK	0x48	2.5.1.17
GET_L2000-DATA	0x49	2.5.1.18
GET_INPUT	0x4A	2.5.1.2
SET_CAM_NEW	0x10	2.5.2.1
SET_IDLETIME	0x12	2.5.2.2
SET_ERROR_QUIT	0x17	2.5.2.3
SET_LOGIC	0x18	2.5.2.4
SET_CAM_MOVE	0x1A	2.5.2.5
SET_CAM_CHANGE_SHORT	0x1B	2.5.2.6
SET_GATEWAY_ID	0x1C	2.5.2.7
SET_CAM_CHANGE_MT	0x20	2.5.2.8
SET_PARAMETER	0x21	2.5.2.9
SET_OUTPUT_NAME	0x22	2.5.2.10
SET_EEROM_BLOCK	0x23	2.5.2.11

Bild 10: Befehlstabelle

Die Befehle "SET_PARAMETER" und "GET_PARAMETER" werden dazu verwendet, um Parameterdaten aus dem Nockenschaltwerk zu lesen oder in das Nockenschaltwerk zu schreiben. Die einzelnen Parameterwerte können der Parametertabelle (siehe Bild 11) entnommen werden.

Befehlsname	Befehlswert	Bedeutung	Erläuterung
PNR SOFT REV	0x0001	see PNR HARD REV	
PNR HARD REV	0x0002	ASCII i. e.: '3"1"2"t' = V3.12t - gibt den Soft- bzw. Hardware Ver-	
		sionsstand zurück	
PNR LINIT NAME	0v0003	ASCIL 7 B: 1/4"8" ' = 1.48	
	0x0003	Gerätetyn	
	0x0005	Artikelnummer	
	0×0006	Seriennummer	
	0×0007	Ontion X	
	0,0007	Cohortin	Konital 2 2 0 4
PNR_ENCODER_ITP	0x0010	Gebertyp	Kapitel 2.3.9.1
PNR_RESOLUTION_PER_TURN	0x0011	Real-Autosung pro Omdrenung	Kapitel 2.3.9.2
PNR_NUMBER_OF_TURNS	0X0012	Real-Anzani Umdrenung	
PNR_SCALED_ENCODER_RES	0x0013	Virtueller Geberwert	Kanital 0.0.0.0
PNR_ENCODER_INVERT	0X0014	Drenrichtungsumkenr	Kapitel 2.3.9.3
PNR_SCALED_COUNT_RANGE	0x0017	Virtueller Zahlbereich	
PNR_COUNT_RANGE	0x0018	Zahlbereich bei Ink-Gebern	
PNR_COUNT_RESTORE_VALUE	0x0019	Bei X 16:= Bremspunkt	
PNR_TIMEBASE	0x001C	Zeitbasis bei Timer	
PNR_DEADTIME_BASE_US	0x001D	Zeiteinheit für TZK in µs (wenn nicht definiert -> 1000µs)	
PNR_NUMBER_OUTPUTS	0x0020	Anzahl Ausgänge	
PNR_NUMBER_LOCK_OUTPUTS	0x0021	Anzahl verriegelte Ausgänge	
PNR_NUMBER_DATA_RECORDS	0x0022	Anzahl Datensätze	
PNR_NUMBER_LOGIC_INPUTS	0x0023	Anzahl Logik Eingänge	
PNR NUMBER ANGLE TIME	0x0024	Anzahl WZ-Ausgänge ab Ausgang 1	
PNR NUMBER OUTNAME CHAR	0x0025	Ausgangsnamen	
PNR NUMBER PROGRAMS	0x0026	Anzahl Programme	
PNR NUMBER AXIS	0x0027	Anzahl Achsen	
PNR NUMBER ANALOGOUTPUT	0x0028	Anzahl Analog Ausgänge	
PNR NUMBER COUNTER CAM	0x0029	Anzahl Zählnocken	
PNR FIRST OUTPUT NR	0x0020	Zählung beginnt bei 1	
PNR SPEED SCALE	0×002/1	Bezonen auf II/msec -> 60000 - II/min	
TRICOT EED_OOALE	0,0030	0 9909000 (Imdr/mSek)	
	0v0031	Snrache	Kanitel 23.0.4
	0×0031		Kapitel 2:3.3.4
PNR_DEADTIME_TTP	0x0032	Prosofwort hoj lpk / Abs : Virtuallar Wart	Rapitel 2.3.9.5
	0x0033	Attives Pregramm	A may Programme 4
	0x0034	Akuves Programm	Umax Programm -1
PNR_ACTIV_AXIS	0X0035	Aktive Achse	1max Achsinr.
PNR_CALC_SPEED_START	0X0036	TotStart skallert	
PNR_CALC_SPEED_STOP	0X0037	lotstop skallert	
PNR_DICNET_ID	0x0038	latsachi. Wert (NSW= 8095), RS232 = 232	
PNR_CLEAR_LENGTH	0x0039	Lange Clearimpuls	
PNR_BREAK_PARA	0x003A	(BremsA*0x10000)+BremsB	
PNR_OUTPUT_OFF_SPEED	0x003B	Geschwindigkeits-Schwellenwert unterhalb dem die Ausgänge	
		abgeschaltet werden	
PNR_WZ_MAXTIME	0x003C	Zeit in ms	
PNR_WZ_TIMEBASE	0x003D	Zeit in µs	
PNR_V_LIMIT	0x003E	M13 = 1,wenn V_LIMIT überschritten	
PNR_DREHSCHALTER	0x003F	Schalterstellung lesen	
PNR_RESTART	0x004E	Warmstart mit Wert 0x1234	
PNR_CLEAR_EEROM	0x004F	Generallöschung:1: 0x1234 -> 2:~0x1234	
PNR_STATUS_FLAGS	0×0050		
PNR PROC OUT MAPPING	0x0051	Mapping der Prozeßdaten im Feldbus	
PNR PROC IN MAPPING	0x0052	Mapping der Prozeßdaten im Feldbus	
PNR USED EEROM LEN	0x0053	Tatsächlich genutzte EEROM Länge	
PNR S7 MODE	0x0054	1 = S7 keine Daten ins EEROM kopieren: 0xFF = kein PB	
PNR RESET FEROM	0x0055	Auf Werkseinstellung setzen	
PNR_CYCLETIME	0x0056	Zvkluszeit lesen	
PNR AKTIV STATUS	0x0057	siehe Kapitel 2.3.11	
PNR PROC LOAD	0x0058	Prozessorauslastung	+
	0x0059	Freischaltung von Ontionen	
PNR TEACH IN ZEROPOINT	0x0054	Teach-In Nullnunktverschiehung	
	0v005P	Mit 0v1234 -> Limschaltung in Testmode	
DND DATA NOT IN EEDOM	0,0050	INeckon, Totzeiten werden im DAM geensishert (flüchtig)	
	0x0050	Notken, totzeiten werden im RAM gespeichert (liuchtig)	
THIR_SCALED_NR_OF_TURNS	0,0010	Peolor Offect Wort	
THIN_ZEROFONIT_OFFSET_REAL	0,0000	Nearch OriSet-Welt	
	0x005E	Dynamischer Oliset (nur 108)	
	UXUUSE 0x0000	U=RS232, 1=DICINET; onne Busabschluss; 3= DICINET MIT BA	
PNK_ERROK_QUII	0X0060	Error Quit über Moabus 0 -> 1 (Nur LOCON 100-MB)	

Bild 11: Parametertabelle