

Instruction Manual Cam Controls with Fieldbus connection

Deutschmann Automation GmbH & Co. KG www.deutschmann.com | wiki.deutschmann.de

Manual Art.-No. V3058E

1	Intro	duction
	1.1	On this manual
	1.1	1 Symbols
	1.1	2 Concepts
	1.1	3 Suggestions
	1.2	Product program of Deutschmann Automation
2	Intro	duction
3	Prog	ram
4	Sync	hronization (starting phase)
	4.1	Data exchange
	4.2	Data structure of a request (from PLC to cam control)
	4.3	Process data in singleturn-format
	4.4	Process data in Multiturn-format
5	Table	e-types of the parameter-data-table
6	Offse	et-table
	6.1	Writing cams in the cam control
	6.2	CAM ST Cams
	6.3	Offset-table for idle time
	6.4	Idle time: IDLE
	6.5	Offset table for control table
	6.6	Devices control-table: CONTROL_TYPE
	6.7	Offset table for Multiturn cams
	6.8	Cams for Multiturn: CAM_MT
	6.9	Offset table for direction cams
	6.10	Direction cams: DIRECTION_CAM
	6.11	Reference: REFERENCE
	6.12	Offset table for angle-time cams
	6.13	Angle-time cams: AT_CAM_ST
	6.14	LOGIC-function: LOGIC
	6.15	Process data for Singleturn: Processdata_ST (read only)
	6.16	Process data for Long: PROCESSDATA_LONG (read only)
	6.17	Process data for ROTARNOCK 4: Processdata_80 (read only) 16
	6.18	GSD-module for Profibus cam control
	6.19	Example: Parameter-table
	6.20	Data component-generator
7	Conr	nection cam controls via MPI UNIGATE to S7 300-400
	7.1	Accessories
	7.2	Initiation
	7.2	1 Configuring the Gateway

	7.2.1.1 Configmode	
	7.3 Setting RefDB	
8	Connection I OCON 24 cam controls via MPI to PI C	24
U	8.1 Protocol PLC	24
9	Connection LOCON 24 cam controls via PROFIBUS to PLC	25
	9.1 Protocol: DICNET	25
	9.2 Protocol: PLC-SPS	25
	9.3 Initiation	25
10	Connection ROTARNOCK cam controls via PROFIBUS to a PLC	26
	10.1 Protocol: PLC-SPS	26
	10.2 Initiation	26
	10.3 Connecting ROTARNOCK 4 with the PROFIBUS	27
11	Connection ROTARNOCK cam controls via MPI to S7 300 - 400	29
	11.1 Data exchange	29
	11.2 Initiation	29
	11.3 History	30
	11.4 Programming cable for ROTARNOCK	30
12	Adjusting the PROFIBUS- and MPI-ID at LOCON and ROTARNOCK	31
	12.1 Adjusting the PROFIBUS-ID	31
	12.1.1 Example for S7 with PC-adapter	31
	12.1.2 Example via the RS232-Interface	31 31
12	Connection POTAPNOCK cam controls via PROFINET to \$7	
15	13.1 Stort up	32 32
	13.2 Connection ROTARNOCK 100 to PROFINET	
	13.3 PROFINET device name	
	13.4 LED-PN	39
	13.5 Programming of the cams	39
14	Reaction time of cam controls at hardware-program shift	43
	14.1 Reaction time LOCON 24 MPI	43
	14.2 Reaction time ROTARNOCK 2 - PROFIBUS	43
15	Error messages	45
	15.1 Status LED at the ROTARNOCK	45
16	Servicing	46
-	16.1 Returning a unit	46
	16.2 Internet	47

29.7.21

1 Introduction

1.1 On this manual

This manual documents installation, functions and operation of the Deutschmann unit specified on the cover sheet and in the header.

1.1.1 Symbols

Particularly **important text sections** can be seen from the adjacent pictogram.

You should **<u>always</u>** follow this information since, otherwise, this could result in malfunctions or operating errors.

1.1.2 Concepts

The expressions 'LOCON' and 'TERM' are frequently used throughout this manual with no further model specifications. In such cases, the information applies to the entire model series.

1.1.3 Suggestions

We are always pleased to receive suggestions and wishes etc. and endeavour to allow for these. It is also helpful if you bring our attention to any errors.

1.2 Product program of Deutschmann Automation

A detailed and topical outline of our product range can be found on our homepage at http://www.deutschmann.de

2 Introduction

DEUTSCHMANN cam controls with PROFIBUS- or MPI-interface¹ can easily be operated at a PLC. For this it is necessary that either the protocol DICNET or the protocol PLC-SPS is set at the cam control. All parameters from a cam control can be processed by the DICNET or Deutschmann protocol.

The PLC-SPS protocol allows the processing of the most important parameters in the cam control (see chapter 5, "Table-types of the parameter-data-table" on page 11).

This table form makes a parameterization easier.

This instruction manual describes the PLC-SPS protocol to the DICNET protocol, see comment in chapter 9.1, "Protocol: DICNET" on page 25.

^{1.} MPI-interface: for a Siemens PLC with MPI-interface

3 Program

At a PLC with Profibus the transfer of the parameter data to the cam control is taken over by a PLC program (handling component).

The cam control transfers the process data back in every PROFIBUS cycle. The length of the process data is dependent on the cam control and the selected module of the GSD-file (see chapter 6.18, "GSD-module for Profibus cam control" on page 16).

4 Synchronization (starting phase)²

After switching on the cam control, the PLC and the cam control synchronize themselves. Afterwards the parameter data are copied to the cam control cyclically.

After switching on, the cam control sends a 0xC000 (bit 15 and 14 set in the 1. word) until it gets this word back from the PLC as an echo. After that the cam control sends a 0x0000 (bit 15 and 14 deleted in the 1. word) and ends the synchronization with it.

From that point on the handling component copies always 3 subsequent words from the parameter data table, from the address word via the bus to the cam control (see chapter 4.2, "Data structure of a request (from PLC to cam control)" on page 9).

Values in hex x = not used

4.1 Data exchange

Now the PLC sends 0x8000 (bit 15 write-req set) with start address of the first word from the table and the first three words from the parameter table.

A parameter table always starts with the address 0. All data have always to be copied in intervals of 6 byte to the cam control. As a confirmation the PLC waits for the first word of the request (0x8000 hex).

The second data record, that is sent from the PLC to the cam control is 0x8006 hex in the first word and the next three words from the parameter table.

Consequently the start address always has to be a multiple of 6. Reaching the end of the table the copy process starts again from the address 0.

As a confirmation the PLC waits for the first word of the request (0x8006 hex).

Besides the PLC always gets the process data back (see chapter 4.3, "Process data in singleturn-format" on page 10).

29.7.21

^{2.} not at MPI

x = Not used

Y = Number of bytes of the offset table

Z = Start address of the parameter data, e. g. from type 2

4.2 Data structure of a request (from PLC to cam control)

1. word			2. word	3. word	4. word	5. word
Bit 15 Command	Bit 14 Command	13 0 Address pointer	15 0 Data	15 0 Data	15 0 Data	only for R4 with logic function
0 0 1 1	0 1 0 1	not used not used write-request sync (starting phase)	6 byte data fro	om address poir	nter	16 bit logoc for ROTARNOCK 4

Note: With regard to the logic function, the following must be observed when using the 16 inputs:

* ROTARNOCK 4-PROFIBUS: The 1st input is in the 10 byte in the 5th word in the PROFIBUS.

* ROTARNOCK 100-PROFIBUS: The 1st input is in the 9 byte in the 5th word in the PROFIBUS.

4.3 Process data in singleturn-format

From the 5. word on the process data are also provided in every PROFIBUS-cycle.

Word	1. word	2. word	3. word	4. word	5. word	6. word	7. word	8. word	
Bit	15 0	15 0	15 0	15 0	15 0	15 0	15 0	15 8	70
	Copy of the 1. word from the PLC as confirmation of receipt	_	_	_	Process	data			
					Position	Speed	Output	Act- Progr	Error No
					ΗL	ΗL			

Data structure of a response from the cam control to the PLC:

4.4 Process data in Multiturn-format

From the 5. word on the process data are permanently provided.

Data structure of a response from the cam control to the PLC:

Word Byte No.	1. word Byte 0, 1	2. word Byte 2, 3	3. word Byte 4, 5	4. word Byte 6, 7	5. word Byte 8, 9	6. word Byte 10, 11	7. word Byte 12 , 13	
Bit	15 0	15 0	150	15 0	31 16	150	15 0	
	Copy of the 1. word from the PLC as confirma- tion of receipt		_		Position		Speed	

 Byte 14	Byte 15	Byte 16	Byte 17	Byte 18	Byte 19
 70	70	70	15 8	23 16	31 24
 ActProgr	Error No.	Output 1 to 7	Output 9 to 16	Output 17 to 24	Output 25 to 32

 Byte 20	Byte 21	Byte 22	Byte 23	Byte 24	Byte 25
 70	70	70	15 8	23 16	31 24
 Output 33 to 40	Output 41 to 48	Output 49 to 56	Output 57 to 64	(Reserve)	Reserve

Assignment of the outputs to bits

Example:

MSB	 LSB
Bit 7	Bit 0
Output 8	 Output 1

5 Table-types of the parameter-data-table

Description	Fixed value	Table-type	Length
OFFSET_TYPE	0x0001	Offset always starts at table-address 0	WORD
CAM_ST_TYPE	0x0003	Cam table	WORD
IDLE_TYPE	0x0004	Idle time table	WORD
CONTROL_TYPE	0x0005	Config-parameter table	WORD
CAM_MT_TYPE	0x0007	Cams for Multiturn devices	WORD
DIRECTIONCAM_TYPE	0x0008	Direction cams	WORD
REF_TYPE	0x000A	Only for MPI-Gateway with protocol PLC-SPS	WORD
AT_CAM_ST_TYPE	0x000B	Angle-time cams	WORD
LOGIC_TYPE	0x000C	Logic function	WORD

6 Offset-table

In the offset-table three words are reserved in each case for the description of a parameter table. The first three words urgently have to be located at the beginning of this parameter table, they, themselves declare the offset-table.

The first word contains the key sign for this offset-table (0x0001), the second word contains the number of required bytes of the table and the third word contains the start address of the table. The start address of the offset-table always equals zero.

The entries in the offset-table enable already existing tables to be extended or new ones to be added. The parameter table always starts with the offset declaration (example).

Description	Value in the PLC	Function	Length
Offset_Type	1		WORD
Offset_Length	To be calculated		WORD
Offset_Address	0		WORD

Thereupon the declaration of each table follows by means of the offset-table. As an example only the offset-tables for cams and idle times are listed here.

6.1 Writing cams in the cam control

Offset-table for cams

Dscription	Value in the PLC	Function	Length
Cam_ST_Type	3		WORD
Cam_ST_Length	Number of required cams by 6		WORD
Cam_ST_Address	Address of the first cam entry		WORD

6.2 CAM_ST Cams

Structure	Value	Function	Length
ProgNo	0-15		BYTE
Output		0 = cam will be deleted	BYTE
On			WORD
Off			WORD

If both switching points ON and OFF as well equal 0, then the cam will also be deleted.

6.3 Offset-table for idle time

Description	Value in the PLC	Length
Idle_Type	4	WORD
Idle_Length	Number of required idle times by 6	WORD
Idle_Address	Address of the first idle time entry	WORD

6.4 Idle time: IDLE

Structure	Value	Function	Length
ProgNo			BYTE
Output		0_n und OFF = 0 => this idle	e time will
		be deleted	BYTE
IdleT_On			WORD
IdleT_Off			WORD

Any further required idle time will be lined up gaplessly.

In order to automatically program the cam control, the programmer of the PLC only has to change the corresponding values in the structure-table.

6.5 Offset table for control table

Description	Value in the PLC	Length
Control_Type	5	WORD
Control_Length	here fixed on 6	WORD
Control_Address	Address of the first control entry (New_Prog)	WORD

6.6 Devices control-table: CONTROL_TYPE

In this table those bytes and flags are set by the PLC programmer, that carry out a specific configuration in the cam control. The table consist of six bytes:

Description	Value	Function	Length
New_Prog	015	Select new program	BYTE
ConfigFlags: Teach _In_Zero	Bit 0	Teach-In Zero Point (high active)	BOOL
Invert_Encoder	Bit 1	Invert-Encoder-Countdir (0=not inverted, 1=invert)	BOOL
Error_Quit	Bit 2	Error-Quit	BOOL
Res_03 Res_07	Bit 3 - 7	Res_03_Res_07	BOOL
Res_0			BYTE
Res_1			BYTE
Res_2			BYTE
Res 3			BYTE

6.7 Offset table for Multiturn cams

Description	Value in the PLC	Length
Cam_MT_Type	7	WORD
Cam_MT_Length	Amount of required cams by 12	WORD
Cam_MT_Address	Address of the first MT-entry	WORD

6.8 Cams for Multiturn: CAM_MT

Structure	Value	Function	Length
ProgNo			WORD
Output		0 = deletes the cams in the device	WORD
On			DWORD
Off			DWORD

6.9 Offset table for direction cams

If the number of bits, which are corresponding to an output is 0, then this output is not active. If the bit corresponding to an output is "pos" = 1 and bit "neg" = 0, then the cam turns in positive rotational direction

Description	Value in the PLC	Length
Direction_Cam_Type	8	WORD
Direction_Cam_Length	6 byte	WORD
Direction_Cam_Address	Address of the first direction-cam-entry	WORD

6.10 Direction cams: DIRECTION_CAM

Structure	Value	Function	Length
Output16pos	Bit 7	At positive rotational direction switching output	BOOL
Output15pos	Bit 6	At positive rotational direction switching output	BOOL
Output14 pos	Bit 5	At positive rotational direction switching output	BOOL
Output13pos	Bit 4	At positive rotational direction switching output	BOOL
Output12pos	Bit 3	At positive rotational direction switching output	BOOL
Output11pos	Bit 2	At positive rotational direction switching output	BOOL
Output10pos	Bit 1	At positive rotational direction switching output	BOOL
Output9pos	Bit 0	At positive rotational direction switching output	BOOL
Output8pos	Bit 7	At positive rotational direction switching output	BOOL
Output7pos	Bit 6	At positive rotational direction switching output	BOOL
Output6pos	Bit 5	At positive rotational direction switching output	BOOL
Output5pos	Bit 4	At positive rotational direction switching output	BOOL
Output4pos	Bit 3	At positive rotational direction switching output	BOOL
Output3pos	Bit 2	At positive rotational direction switching output	BOOL
Output2pos	Bit 1	At positive rotational direction switching output	BOOL
Output1pos	Bit 0	At positive rotational direction switching output	BOOL
Output16neg	Bit 7	At negative rotational direction switching output	BOOL
Output15neg	Bit 6	At negative rotational direction switching output	BOOL
Output14neg	Bit 5	At negative rotational direction switching output	BOOL
Output13neg	Bit 4	At negative rotational direction switching output	BOOL
Output12neg	Bit 3	At negative rotational direction switching output	BOOL
Output11neg	Bit 2	At negative rotational direction switching output	BOOL
Output10neg	Bit 1	At negative rotational direction switching output	BOOL
Output9neg	Bit 0	At negative rotational direction switching output	BOOL
Output8neg	Bit 7	At negative rotational direction switching output	BOOL
Output7neg	Bit 6	At negative rotational direction switching output	BOOL
Output6neg	Bit 5	At negative rotational direction switching output	BOOL
Output5neg	Bit 4	At negative rotational direction switching output	BOOL
Output4neg	Bit 3	At negative rotational direction switching output	BOOL
Output3neg	Bit 2	At negative rotational direction switching output	BOOL
Output2neg	Bit 1	At negative rotational direction switching output	BOOL
Output1neg	Bit 0	At negative rotational direction switching output	BOOL
Reserved	not used		WORD

Direction cams' mode of operation

State	Output 1 negativ	Output 1 positiv	
No output update	0	0	
Only negative direction	1	0	
Only positive direction	0	1	
Both directions	1	1	

In the state of default an output update takes place in both directions.

6.11 Reference: REFERENCE ³

Structure	Value	Function	Length
Offset_Type	1		WORD
Offset_Length	0x000C		WORD
Offset_Address	0		WORD
ID_DB_Table_Type	0x000A		WORD
ID_DB_Table_Length	6		WORD
ID_DB_Table_Address	0x000 C		WORD
Ref_Table.Device (1).ID			WORD
Ref_Table.Device (1).FlagReg			WORD
Ref_Table.Device (1).DB_No			WORD

3. only for Unigate MPI

6.12 Offset table for angle-time cams

Description	Value in the PLC	Length
AT_CAM_ST_Type	0x0B	WORD
AT_CAM_ST_Length	Amount of required cams by 6	WORD
AT_CAM_ST_Address	Address of the first angle-cam-entry	WORD

6.13 Angle-time cams: AT_CAM_ST

Structure	Value	Function	Length
ProgNo			BYTE
Output			BYTE
On			WORD
Duration	0x0001 - 0x7EF4	ms	WORD

6.14 LOGIC-function: LOGIC

Structure	Value	Function	Length
ProgNo	from 0 to MAX_PROG		BYTE
DestNo	from 1 to 16	0 deletes complete logic function	BYTE
DestType	0 = hardware output		Byte
	1 = flag		
	2 = hardware output inverted		
	3 = flag inverted		
OpNo1	1 - 32		BYTE
OpType1	0 = internal cam control output		BYTE
	1 = Input: hard-/software		
	2 = flag		
	3 = SR (shift register)		
	4 = PB-Input (only LOCON 200)		
LogicFct1-2	0 = none		BYTE
-	1 = or		
	2 = and		
	3 = or not		
	4 = and not		
OpNo2	1 - 32		BYTE
OpType2	see OpType1		BYTE
LogicFct2-3	see LogicFct1-2		BYTE
OpNo3	1 - 32		BYTE
ОрТуре3	see OpType1		BYTE
LogicFct3-4	see LogicFct1-2		BYTE
OpNo4	1 - 32		BYTE
ОрТуре4	see OpType1		BYTE
OutputDelay	ms	at present max. 255	WORD
OutputTrigger	0 = leading edge		BYTE
	1 = trailing edge		
Module number	0 basis		BYTE
(only LOCON 200)	x I/O-module number		

6.15 Process data for Singleturn: Processdata_ST (read only)

Structure	Value	Length
Position	1. byte position H, 2. byte position L	WORD
Speed	3. byte speed H, 4. byte speed L	WORD
Output16_1	5. byte output (158), 6. byte output (70)	WORD
Act_Prog	byte indicates the current program number	BYTE
ErrorNo	8. byte indicates current error numbers	BYTE
ResWord_1		WORD
ResWord_2		WORD

6.16 Process data for Long: PROCESSDATA_LONG (read only)

Structure	Value	Length
Position	1. byte position H, 4. byte position L	DWORD
Speed	5. byte speed H, 6. byte speed L	WORD
Act_Prog	byte indicates current program number	BYTE
ErrorNo	8. byte indicates current error number	BYTE
Output1to8	9. byte output (70)	BYTE
Output9to16	10. byte output (158)	BYTE
Output17to24	11. byte output (2316)	BYTE
Output25to32	12. byte output (3124)	BYTE

6.17 Process data for ROTARNOCK 4: Processdata_80 (read only)

Structurer	Value	Length
Position	1. byte position H, 4. byte position L	DWORD
Speed	5. byte speed H, 6. byte speed L	WORD
Act_Prog	byte indicates the current program number	BYTE
ErrorNo	8. byte indicates the current error number	BYTE
Output 1 to 8	9. byte output (70)	BYTE
Output 9 to 16	10. byte output (158)	BYTE
Output 17 to 24	11. byte output (2316)	BYTE
Output 25 to 32	12. byte output (3124)	BYTE
Output 33 to 40	13. byte output (3932)	BYTE
Output 41 to 48	14. byte output (4740)	BYTE
Output 49 to 56	15. byte output (5548)	BYTE
Output 57 to 64	16. byte output (6356)	BYTE
Output 65 to 72	17. byte output (7164)	BYTE
Output 73 to 80	18. byte output (7972)	BYTE

The cam control comes up with the process data. Another handling component has to take care of the processing of the process data.

The handling component sends back the values of the process data-table to the cam control, however, it does not have an influence on the cam control. The process data are supplied by the cam control. Another handling component copies the data into this table.

6.18 GSD-module for Profibus cam control

GSD-file	Module	Cam control
dagw2079	PLC-CSU-ST	LOCON
dagw2079	PLC-CSU Long	Multiturn/LOCON
R2pb2935	S7 DB + Proc.Data	ROTARNOCK 1, 2, 3
R2pb2935	S7 DB + Proc.DataLong	Multiturrn ROTARNOCK
R4pb3231	S7 DB + Proc.Data	ROTARNOCK 4
R4pb3231	S7 DB + Proc.DataLogic	ROTARNOCK 4 with logic
R100	S7 DB, Proc.Data, No Logic	ROTARNOCK 100
R100	S7 DB, Proc.Data, Logic 16	ROTARNOCK 100 with logic
R100	S7 DB, Proc.Data (CPU318)	ROTARNOCK 100 to S7 318
L100	S7 DB, Proc.Data, No Logic	LOCON 100
L100	S7 DB, Proc.Data, Logic 16	LOCON 100 with 16 logic inputs
L100	S7 DB, Proc.Data, Logic 8	LOCON 100 with 8 logic inputs
L100	S7 DB, Proc.Data (CPU318)	LOCON 100 to S7 318

Explanation:

Туре	Length
BOOL	1 bit
BYTE	8 bit
WORD	2 byte
DWORD	4 byte

6.19 Example: Parameter-table

Address in dez	Description	Length	Value in dez
0	Offset_Type	WORD	1
2	Offset_Length	WORD	12
4	Offset_Address	WORD	0
6	Cam_ST_Type	WORD	3
8	Cam_ST_Length	WORD	6
10	Cam_ST_Address	WORD	12
12	Cam_ST_Cam (1).ProgNo	BYTE	0
14	Cam_ST_Cam (1).Output	BYTE	4
16	Cam_ST_Cam (1).On	WORD	20
18	Cam_ST_Cam (1).Off	WORD	40

In this example the output 4, Cam_ST_Cam(1).Output is set in the program 0, Cam_ST_Cam(1).ProgNr., between position 20, Cam_ST_Cam(1).On and 40, Cam_ST_Cam(1).Off. The value Cam_ST_Length is the amount of bytes and is calculated as follows: Amount of cams multiplied by six.

Offset_Length is the amount of bytes of the offset parameters, always starting at zero and ending at the address 10 in this example.

6.20 Data component-generator

The generator generates a desired parameter-table (empty) automatically in the AWL-Format. With it the user is relieved of the calculation of the length-values and start addresses. The program can be loaded from our homepage at http://www.deutschmann.de.

🗗 S7DBGenerator		
<u>D</u> atei		
 ■ Datenbaustein ■ Prozeßdaten ■ Nocken ■ Winkel-Winkel-Nocken ■ Winkel-Zeit-Nocken ■ Richtungsnocken ■ Totzeiten ■ Logik ■ Gerätesteuerung 	Data-Block-DB 01 Name OhneName Version 0.1 Geben Sie hier die Nummer des Datenbauste die Version an. Die Nummer des Datenbausteins darf zwische Name darf weder leer sein noch Leerzeichen muß im Format x.y vorliegen.	ins sowie den Namen und en 1 und 65535 sein, der enthalten und die Version
Datenbaustein		V 1.24

7 Connection cam controls via MPI UNIGATE to S7 300-400

7.1 Accessories

- S7 300 400
- MPI Gateway (from V1.3 on)
- 1 MPI-bus cable (RS485) with plug
- current WINGATE software (for configuring the Gateway)
- current WINLOC software (generates data component) or data component generator
- connection cable between PC and Gateway (RS232 D-SUB to 3pol. Phoenix)
- S7 project or reference-data component and cam control data component as file

Connection diagram

7.2 Initiation

7.2.1 Configuring the Gateway

• Connect the Gateway with the PC via Com Port: Set the interface of the Gateway to RS232 - (pin assignment for this cable, see instruction manual).

7.2.1.1 Configmode

- Set the rotary switches on the RS side of the Gateway to "F" for the configuration.
- Reset the Gateway by means of voltage OFF/ON.
- Now the "State" LED flashes red, "Power" LED flashes green.
- Start the WINGATE software on the PC. When the Gateway is connected to the PC and voltage is applied, an automatic is carried out by starting WINGATE. That means, the current configuration of the Gateway is loaded - normally the Gateway is set to the protocol transparent.

If problems occur with the automatic upload, it can also be carried out manually (see description of the Gateway or of the WINGATE software).

- Change the transparent protocol to PLC SPS in the WINGATE software.
- Enter the MPI address at the MPI partner (PLC). Normally the MPI address of the PLC is set to >> 2 <<.

🤣 Wingate			_ 🗆 ×
<u>File Options Extras H</u>	elp		
	🔲 more jtems ed	itable	
Parameter	Value		
Software revision	V 1.3		
Device type	MPI		
Serial Number	12345678		
Store Serial Number	No		
Protocol	PLC-SPS		
MPI partner	2		
MPI max Station address	31		
MPI GAP-factor	5		
MPI Reference DB	7		
64 bytes written to file	64 b	ytes V 2.21 (234)	//,

7.2.2 Example for the settings

- The maximum station address is supposed to be set to >> 31 << by default. Please keep it.
- The GAP factor is supposed to be set to 5 by default.
- Please set the MPI reference DB (DB = data component) (in the example >> DB7 <<).
- Attention: RefDB has to correspond to the S7 project.
- Save configuration. File -> Save as, not necessarily
- Download the configuration to the Gateway. File -> Download
- Close WINGATE.
- Set the Gateway's rotary switches S4 and S5 on the RS-side to >> 00 <<.
- Set the MPI address at the Gateway on the side of the MPI-interface by means of the rotary switch, e. g. address >> 3 << rotary switch low to >> 3 << and rotary switch high to >> 0 << Maximum allowed address is >> 31 <<.
- RS485 or RS232, dependent on the interface of the cam control.
- Load the S7 project in Step7 PC-software. Two components are included NSWDB.awl and RefDB.awl).
- Connect the Gateway with the PLC S7 via the MPI-interface by means of the MPI cable.
- Reset the Gateway by means of voltage OFF/ON.
- MPI State LED shines green. Communication with S7
- MPI Power shines green.
- MPI Control shines green.

or

- Add the components through the STEP7 function external source.
- Add and convert RefDB.

MPIRefDB R:\Programme\S	7_Projekt\MPIREFDB			_ 🗆 ×
MPIRefDB SIMATIC 300-Station D CPU315-2 DP(1) G S7-Programm(1) G Quellen G Bausteine				
	Ausschneiden Kopieren Einfügen	Ctrl+X Ctrl+C Ctrl+V		
	Löschen	Del		
	Neues Objekt einfü	igen 🔸	AWL-Quelle	
	Objekteigenschaft	en Alt+Return	Externe Quelle	

Import AWL-file in STEP7 (File "Source", right mouse button into right window)

Externe Que	lle einfügen		? ×
<u>S</u> uchen in:	🔁 Rotarnock 🗾 🖻	Ċ	
DB2.awl			
DB7.awl			
			<u><u><u> </u></u></u>
Datei <u>n</u> ame:	DB7.awl		O <u>f</u> fnen
Dateityp:	Quellen (*.awl;*.gr7;*.scl;*.inp;*.zg;*.sdg;*.sd)	A	\bbrechen

Select generated source from file

29.7.21

Imported source

Convert imported source (right mouse button)

Converted data component

After the conversion the DB no. 7 is in the file "data components"

🛃 MPIRot_2 R:\Programme\S7_Projekt 📮 🗖 🗙		
🖃 🎒 MPIRot_2	🕞 OB1	
E- 🚮 SIMATIC 300-Station	BB7	
📥 📲 CPU315-2 DP(1)		
⊡ 🗊 S7-Programm(1)		
🕞 Quellen		
🔤 Bausteine		
J		

 If necessary the RefDB has to be renamed (in WINGATE >> DB 7 << was entered, if necessary the RefDB.awl has to be renamed in STEP7).

Adresse	Name	Тур	Anfang	Kommentar
0.0		STRUCT		
+0.0	Offset_Table	STRUCT		
+0.0	DB_OFFSET_OFFSET	STRUCT		Steht immer ab Adresse O
+0.0	Offset_Table_Typ	WORD	W#16#1	
+2.0	Offset_Table_Lenght	WORD	W#16#C	
+4.0	Offset_Start_Adress	WORD	W#16#O	
=6.0		END_STRUCT		
+6.0	DB_OFFSET_ID_DB	STRUCT		Offset Tabelle für ID<->DB
+0.0	ID_DB_Table_Typ	WORD	W#16#A	Dieser Tabellen Typ hat den Wert 10
+2.0	ID_DB_Table_Lenght	WORD	W#16#6	Dieser Wert berechnet sich aus Anzahl Geräte mal 6 Byte
+4.0	ID_DB_Start_Adress	WORD	W#16#C	Start Adresse der Referenz Tabelle
=6.0		END_STRUCT		
=12.0		END_STRUCT		
+12.0	Referenz_Tabelle	STRUCT		Referenz Tabelle für die Zuordnung der Geräte zu den DB
+0.0	Geraet	ARRAY[11]		
*0.0		STRUCT		
+0.0	ID	WORD	W#16#1	ID des Nockenschaltwerkes
+2.0	FlagRegister	WORD	₩#16#1	Wird LSB 1 gesetzt liest das Gateway den in DB_No definierten DB
+4.0	DB_No	WORD	W#16#1	zugehöriger DB zur ID
=6.0		END_STRUCT		
=6.0		END_STRUCT		
-10.0		RUD CODUCO	1	

Declaration view

- Insert and convert NSWDB.awl (repeat above steps).
- If necessary the DBNo. of the NSWDB.awl has to be renamed.

7.3 Setting RefDB

- In the RefDB >> DB 7 << in DB_No now the DB number of the NSWDB has to be entered >> W#16#02<<.
- Depending on how many cam controls are connected, the entry has to be changed in the array. For one cam control the entry has to be changed: for one cam control >> Array [1...1] <<, for two cam controls >> Array [1...2] << and so on...
- In the DB 7 now the ID of the connected cam control has to entered in ID >> W#16#01 <<
- Table Length has to be adjusted. Depending on the number of connected cam controls the amount of devices has to be multiplied by 6 and the entry has to be made correspondingly >> W#16#06 << .
- For two cam controls the entry has to look as follows: >> W#16#12 <<. Now the ID >> 1<< has to be set, as entered in the DB 7 before. This is made through the bridges in the 9pol. D-SUB plug, by means of a rotary switch or with the WINLOC software.
- Flag Register -> LSB set >> W#16#01 <<. Then all changes are transferred in the NSWDB.
- Set RefDB number via switch S5.

Adresse	Name	Тур	Anfangswert	Aktualwer	Kommentar
0.0	Offset_Table.DB_OFFSET_OFFSET.Offset_Table_Typ	WORD	W#16#1	W#16#1	
2.0	Offset_Table.DB_OFFSET_OFFSET.Offset_Table_Lenght	WORD	W#16#C	W#16#C	
4.0	Offset_Table.DB_OFFSET_OFFSET.Offset_Start_Adress	WORD	W#16#O	W#16#O	
6.0	Offset_Table.DB_OFFSET_ID_DB.ID_DB_Table_Typ	WORD	W#16#A	W#16#A	Dieser Tabellen Typ hat den Wert
8.0	Offset_Table.DB_OFFSET_ID_DB.ID_DB_Table_Lenght	WORD	W#16#6	W#16#6	Dieser Wert berechnet sich aus A
10.0	Offset_Table.DB_OFFSET_ID_DB.ID_DB_Start_Adress	WORD	W#16#C	W#16#C	Start Adresse der Referenz Tabel
12.0	Referenz_Tabelle.Geraet[1].ID	WORD	W#16#1	W#16#1	ID des Nockenschaltwerkes
14.0	Referenz_Tabelle.Geraet[1].FlagRegister	WORD	W#16#1	W#16#1	Wird LSB 1 gesetzt liest das Gat
16.0	Referenz_Tabelle.Geraet[1].DB_No	WORD	W#16#1	W#16#2	zugehöriger DB zur ID

Data view of the RefDB

- In the LOCON 24-series the protocol PLC-SPS is supported from V4.03 on and in the LOCON 1, 2, 16, 17-series from the V5.10 on.
- Now the Gateway cyclically reads (flagregister to 1) the data from the data component No2 (DB_No to 2) and compares them to the content of the cam control with the ID 1 (ID to 1).
- If the data in the DB2 has changed, the Gateway automatically changes the parameter in the cam control.

At present the following functions supports by the protocol PLC-SPS in the NSWDB:

[Process_Table]	[Cams_Table]	[IDL_Table]	[CMD_Table]
Position	ProgNo	ProgNo	New_Prog
Speed	Output	OutputIdleT_On	TeachIn
Output15_0	On	IdleT_Off	Invert_Encoder
Act_Prog	Off		Quit_Error
ErrorNo			
1		1	

The NSWDB-file can automatically be generated with the data component generator and it can be imported as described above.

Attention:

It is possible that the device does no longer react after a download into the S7.

Then the outputs are not processed and the position is no longer transferred.

The device has to be restarted then.

8 Connection LOCON 24 cam controls via MPI to PLC

8.1 Protocol PLC

Default: own MPI address:3MPI-address PLC:1Used data component (RefDB):No. 7LOCON device ID:0Devices DB-no.:12 (0x0C)

the instruction manual for LOCON 24).

The termination at the LOCON 24, R + with Dic + and R - with Dic - absolutely has to be activated, if no other device is connected at the DICNET. Connect Prog Enable with + 24 V (see also chapter "Electrical connections LOCON 24, 48, 64" in

9 Connection LOCON 24 cam controls via PROFIBUS to PLC

9.1 Protocol: DICNET

See instruction manual Communication profile for cam controls of Deutschmann Automation.

- GSD-file: Dagw2079.gsd
- Module: "DEUTSCHMANN (Parameter only)" 0xBC
- Module: "DEUTSCHMANN (Para., Pos, Speed)" 0xBC, 0x51

In the status on delivery the DICNET-ID is set to 0.

9.2 Protocol: PLC-SPS

See corresponding instruction manual

- GSD-file: Dagw2079.gsd
- Module: "DEUTSCHMANN (PLC-CSU-ST)" 0xB7, 0x97
- Module: "DEUTSCHMANN (PLC-CSU Long)" 0xB7, 0x9B

Attention: After a cold start all values in the cam control are deleted.

The PLC is master, therefore the programming can only be carried out through the PLC.

9.3 Initiation

Profibus Slave ID: 126 Dez

In the LOCON 24-series the protocol PLC-SPS is supported from V4.03 on and in the LOCON 1, 2, 16, 17-series from the V5.02 on. A project example of the S7-application can be downloaded from our homepage at **http://www.deutschmann.de**.

10 Connection ROTARNOCK cam controls via PROFIBUS to a PLC

10.1 Protocol: PLC-SPS

As described in this instruction manual

- GSD-file for ROTARNOCK 1, 2, 3: R2pb2935.gsd
- Module: "S7DB+Proc.Data" 0xA7, 0x97, 0x97
- Module: "S7DB+Proc.DataLong" 0xB7, 0x9B
- GSD-file for ROTARNOCK 4: R4pb3231.gsd
- Module: "S7DB+Proc.Data" 0xB7, 0xD1, 0x50, 0x9B
- Module: "S7DB+Proc.Data+Logic" 0xB7, 0xD1, 0x50, 0x9B, 0xA1

After a cold start all values in the cam control are deleted.

The PLC is master, therefore the programming can only be carried out through the PLC.

10.2 Initiation

PROFIBUS Slave ID: 126 Dez default

For the parameterization the devices can be reconfigured through a RS232 to a PC with terminal program (STRG + N).

It is more comfortable to configure the device with the current WINLOC software.

Winloc 1.83 for WIN 3.1x		
<u>File Edit Extras Online View Window</u>	<u>H</u> elp	
Terminal RS232	🖬 Upload1	
New PB-Adress (1126):	Program 0 🛓 Memory 0/5	936 🔛 Rem 🖅 🗋 Cfg
	🗅 Hardware Parameter 🗅 Fixed Parameter	name Profibus ID
	⊖Variable Parameter	value 1
	- D Turn direction	range 1 - 126
	El Language	<u>c</u> hange
		Configurations name
	R 2 V 5.1 P:16 A:16 E:A 360 bitwise un	changed
COM 2, ROTARNOCK 2 V5.1		

In case the maximum parameter-table size of 2048 byte is exceeded, error 5 is output. A project example for a S7-application can be downloaded from our homepage at **http://www.deutschmann.de**.

29.7.21

10.3 Connecting ROTARNOCK 4 with the PROFIBUS

There is an extra GSD-file for this device r4pb3231.gsd.

The device always features 64 outputs, from which by hardware means the first 16 are located at the plug. All 64 outputs can be presented in the PROFIBUS with the DB-type "PROCESSDA-TA_80_TYPE".

The logic inputs are also transferred to the cam control by the PLC. It is the 5th word in the PRO-FIBUS.

S7-examples for the assignment of I/O-addresses in OB1

■ 0B1 ID3231V2\9	SIMATIC 300-Station\CPU 315-2 DP
OB1 : Titel:	
Aufruf der DB K	opierroutine FB mit Instanz Tabelle.
Netzwerk 1: Tite	=1:
Kommentar:	
CALL "FB2 DB_NUM_NS	2_Kopp1_SPS_L24" , "Instanz_zu_FB2" 50:=0#16#1
PEW_1	:=W#16#3C
PEW_2	:=W#16#44
PEW_3 DFW 4	:=W#10#40 •=W#16#40
РАМ 1	:=W#16#3C
PAW 2	:=W#16#44
BE	
	•
•	

... and in the hardware configurator

11 Connection ROTARNOCK cam controls via MPI to S7 300 - 400

11.1 Data exchange

The data exchange is carried out automatically through the configured data component (DB), described as parameter-table in this instruction manual.

The DB can automatically be generated by means of the DB-generator (data component generator).

The structure of the DB is described in this instruction manual.

Attention:

After a cold start all values in the cam control are deleted.

The PLC is master, therefore the programming can only be carried out through the PLC.

11.2 Initiation

MPI ID:	3 Dez default
MPI Partner Address:	1
MPI GAP Factor:	5 default
MPI Max Station:	31 default
DB Number:	13 default

For the parameterization the devices can be reconfigured through a RS232 to a PC with terminal program (STRG + N).

It is more comfortable to configure the device with the current WINLOC software. Please note that WINLOC contains a teminal program (see picture). However, it is also possible to change the device's configuration via an RS232 at a PC with any terminal program.

In case the maximum parameter-table size of 2048 byte is exceeded, error 5 is output.

Hinloc 1.83 for WIN 3.1x		
<u>File Extras Online Window Font H</u> elp		
🚼 Terminal RS232 📃 🗖 🗙	MPIR2DB1	<u>_ 🗆 ×</u>
∎∎ New Own-MPI-Adress (031):	Program 🛛 🖨 Memory 2/3	136 🔛 Rem 🗉 🗌 Cfg
	C Hardware Parameter C Fixed Parameter ⊘ Variable Parameter	name MPI ID value 3
	- B Turn direction - B Language - B MPI ID - B MPI Partner Address - B MPI GAP-Factor	range 0 - 32 phange
	EMPI Max. Station	Configurations name
	R 2 V 5.1 P:16 A:16 E:A 360 bitwise un	changed 336
COM 2, unsupported Device VD.		

11.3 History

Device	LOC with ware	CON 2 Profi e	24-DP ibus sot	ft-	ROT	ARN	OCK	-DP	UNI	GATE	E MPI	LOC	CON 2	24-MF	PI	MT-I MPI	ROTA	ARNC	DCK-	R100	L100
					1, 2	2, 3		4											1		
Supported table types	V3.3	V3.4			V5.1		V5.02		V1.4							V5.21					
1	х	х			х		х		х			х				х				х	х
2	х	х			х				х			х									
3	х	х			х		х		х			х								х	х
4	х	х			х		х		х			х				х				х	х
5	х	х			х		х		х			х				х				х	х
6		х					х									х					
7		х														х				[X]	х
8		х					х									х				х	х
9 Reserve																					
А									х												
В		х					х									х				х	х
С		х					х													х	х
D							х														

11.4 Programming cable for ROTARNOCK

The programming cable for ROTARNOCK PROFIBUS/MPI is available at the article no. V3467- n^* , where n^* = cable length in meters.

This cable is required for the configuration of the fieldbus parameters (ID, DB-number etc.) via the RS232-interface.

A voltage supply to the pins 24 (24V) and 25 (Gnd) has to be made externally.

12 Adjusting the PROFIBUS- and MPI-ID at LOCON and ROTARNOCK

12.1 Adjusting the PROFIBUS-ID

By default the Profibus address is preset to 126 Dez (as already described in chapter 9.3 "Initiation" and chapter 10.2 "Initiation").

To change the ID try one of the following possibilities:

12.1.1 Example for S7 with PC-adapter

The PROFIBUS-slave is directly connected to the PC with the programming adapter. By means of a projecting tool, as for instance Step 7 software, the ID can be changed in the Simatic "change Manager-target system-Profibus-address".

12.1.2 Example via the RS232-interface

The proceeding described in the following only applies to ROTARNOCK. The device is connected to the RS232-interface of a PC via the 25-pol. plug (see also chapter "Basic device", subsection "25-pol. D-SUB" in the instruction manual "Electronic cam control ROTARNOCK 1, 2, 3..."). In a simple terminal window, e. g. in WINLOC the ID can be changed with the key combination "Clrg + N" or "Strg + N" or by means of the "config" window in WINLOC. This does not apply to the ROTARNOCK version 5.3.

12.2 Adjusting the MPI-ID

By default the MPI-address is preset to 3 Dez. For changing the ID see chapter 12.1.2 "Example via the RS232-interface".

13 Connection ROTARNOCK cam controls via PROFINET to S7

13.1 Start-up

For parameterizing, the device can be connected to a Terminal or PC with WINLOC32 via an RS 232 interface.

With the current version of WINLOC32 the device can be configured comfortably.

²² ut-l/22 VP 40				
Datei Editor Extras Online Ansicht Eens	ter Hilfe			
🗃 🖩 🖺 🗂 🔍 🍕 🚳		📃 🔄 🗧 🗆 😑	- C1 C2 C3	
Terminal R5232	Upload 1			- ×
	Brogramm 0	Speicher 1/1000	Englisch	
D400 10 01004 UCTC 200 UO 71	r rogramm p			
K100-46-04090-0610-232 03.71	Crofile	Gerätetyp	ROTARNOCK 100	Hardware
	Grank	Gebertyp	absolute parallel	Software
	Marken and Same	Geberauflösung	4096	E feste Parameter
	Koniiguration	fiktive Geberauflösung	4096	Vizard edierbar
	Kommontor	Drehrichtung	Im Uhrzeigersinn	variable Parameter
	Kommentar	Geberüberwachung	no	Corätekonfiguration
	-E-F	Nullverschiebung	0	Geralekoninguralion
	Follow	Art der TZK	bitwise	
	Boolea	TZK Funktion	standard	
	Viranañ	Anzeigefaktor	60	
		Profibus ID	126	
		Bus operation mode	S7	
		Run-Control Ausgang	not mapped	
		Run-Control-Typ	static	
		1		
	R 100 V3.7 P:64 A:4	8 E:A 4096 bitwise Geän	dert	li.
COM 8 direct BOTABNOCK 100 V3 7	Winloc/32 V3 40			

Attention:

The pin assignment for the ROTARNOCK 100-PN can be found in the ROTARNOCK 100 manual in chapter "Pin assignment ROTARNOCK".

13.2 Connection ROTARNOCK 100 to PROFINET

Attention:

The descriptions in the following two chapters refer to the sample project that can be found on the support DVD and on our homepage.

First, the GSDML file (**Download Link: GSDML-ROTARNOCK100.zip**) needs to be imported. The file can be loaded via the web page of the ROTARNOCK 100-PN (PROFINET) or via the accompanied Support DVD or www.deutschmann.com.

Then the device can be selected and inserted. The address area, which is assigned automatically by the SPS must then be consistent with the in the DB3 deposited PEW and PAW, which are used in OB1. (Picture 13.1.1 and Picture 13.1.2)

Device Name: V3795 DEUTSCHMANN Built-in Cam Control

GSDML-V2.3-Deutschmann-ROTARNOCK 100-PN-20150317-16500.xml Illustration: GSDML file: 03/15

Picture 13.1.1:

File Edit Insert PLC Deb	ug View Options Window Help						X
0 🗃 🔓 🖬 🖨 👗 🖻	N 🔞 🗠 🖂 🕼 🏫 🔽 🎗	🛚 🚳 ! « »! 🔲 🖪 🛤 ++ +/ -() 🗇 나 그 거 🕅				
X		Contents Of: 'Environment\Interf	lace'				
	- O Interface	Name					
New network	E-E TEMP	TEMP					
FB blocks	1						
	1						
SFC blocks	1						
Multiple instances Libraries	1						
	1						
	1						
	OS1 : Title:						_
	Aufruf der DB Kopierrou	tine FB mit Instanz Tabelle.					
	Network 1: NSW FB aufru	fen					
	Hier wird die Kommunika	tion zum Nockenschaltwerk geregel	6				
	PEN=0; PAN=0 bedeutet, Startadressen jeweils m	dass das NSW in der Hardwarekonfi- nit 0 beginnt.	guration mit				
	Man kann auch andere Be	reich wählen. Wenn dieser außerhal	lb des				
	Periepheribereiches lie beschreiben der Variabl	gt; abhängig vom verwendeten Mast en in den Prozessdaten über Merke	er. Dann MUSS auch das r erfolgen. Dafür dient				
	der FC3. Darin müssen d	lie Auskommentierungen entfernt we	rden und in der				
	dann die entsprechenden	Merker mit den Entsprechenden Sy	mbolen definiert werde:	a			
	CALL "FB_Kopp1_S	PS_NSW" , "Instanz_zu_FB3" FB3	/ DB3				
	PEN :=N#16	#100					
	PAW :=W#16	#100 M10	0 as Pass	· "Free Kommunikation NSM"			
	Error :="MW1	2" MW17	Tehl	ernummer Kommunikation NSW			
	Network 2 : NSW Prozessd	atenverarbeitung		_			
	Dieser Aufruf muss nur	gemacht werden, wenn entweder ein	L100 oder ein R100				
Program HE Call str	Destreben wird oder wen	n die Prozessdaten uber Merker er	torgen sorr.				•
×							
2							
Idd b blb 1 Emr.)	2. Into 2. Consecutarances	1 di address into 1 5 Marths	C. Disconstant 1 7.0	amaniean /			
	a. mo A U. Crossreterences	A stranger and. A stranger	N or progradual A		0 -00	[1]	from the second

Picture 13.1.2:

🔳 DB3 "I	nstanz_zu_FB3"	R100_FB_ProfiNet_1port\SIMATIC	315-2 DP/PN\CPU 31	5-2 PN/DP\\DB3		_ 🗆 ×
Address	Declaration	Name	Туре	Initial value	Comment	
0.0	in	DB_NUM_NSW	WORD	W#16#0	DB-Nummer des NSW Datenbausteins	
2.0	in	PEW	WORD	W#16#0	Prozessdaten Eingang 1 - Anfangsadresse	
4.0	in	PAW	WORD	W#16#0	Prozessdaten Ausgang 1 - Anfangsadresse	
6.0	in	Reset	BOOL	FALSE	Baustein Reset, Datenübetragung neu initialisieren	
8.0	out	Error	WORD	W#16#0	Fehlerausgabe des Bausteins	
10.0	stat	Zaehler	WORD	W#16#0	Datenwortzähler	
12.0	stat	PDATA_IN_1	ARRAY[03]			
*2.0	stat		WORD			
20.0	stat	PDATA_OUT_1	ARRAY[03]			
*2.0	stat		WORD			
28.0	stat	ErwarteterSlaveEmpfang	WORD	W#16#0	Erwartete Empfangsbestätigung des Slaves (1.Wort)	
30.0	stat	answer_Count	WORD	W#16#0	wird hochgezählt, solange keine Antwort vom NSW da ist	
32.0	stat	DB_Checked	BOOL	FALSE	Datenbaustein geprüft, nicht nochmal prüfen	

The device name can be changed under properties.

-	Pr	ofinet: PROFINET-IO-Syste	m (100)	Eind	t [
	Properties - unigate-p	n-2				
(1) waize	General Identification	IO Cycle				
	Short description:	unigate-pn				
		Profinet-Fieldbus-Node			^	
	-				*	
	Order No. / Firmware:	V3625 / V2.0			_	
I Address	Q Family:	UNIGATE-IC				
	- Device name	lusia				
	-					
	GSD file:	GSDML-V2.1-Deutschma	m-UNIGATE-IC-PN-max512B	20110615-150300) xml	
	GSD file:	GSDML-V2.1-Deutschma Change Release Numb	ann-UNIGATE-IC-PN-max5128	20110615-150300).xml	
	GSD fie:	GSDML-V2.1-Deutschma Change Release Numb	rm-UNIGATE-IC-PN-max5128	20110615-150300).xml	
	GSD file:	GSDML-V2.1-Deutschms Change Release Numb IO System	nn-UNIGATE-IC-PN-max5128	20110615-150300	Domi	
	GSD file: - Node in PROFINET Device number:	GSDML-V2.1-Deutschms Change Release Numb IO System	nn-UNIGATE-IC-PN-max5128 er	20110615-150300).oml	
	GSD file: - Node in PROFINET : Device number: IP address:	GSDML-V2.1-Deutschma Change Release Numb IO System 1 ¥ 172.16.48.64	nn-UNIGATE-IC-PN-max5128 er] PROFINET4O-System (1 	20110615-150300	Dooml	
	GSD file: Node in PROFINET I Device number: IP address: IP address: IP address IP address	GSDML-V2.1-Deutschma Change Release Numb IO System 172.16.48.54 a via IO controller	nn-UNIGATE-IC-PN-max5128 er] PROFINET-IO-System (1 	20110615-150300	Domi	
	GSD file: Node in PROFINET Device number: IP address: IV Assign IP addres	GSDML-V2.1-Deutschma Change Release Numb IO System 172.16.48.64 s via IO controller	nn-UNIGATE-IC-PN-max5128 er PROFINET-IO-System (1 Bhemet	20110615-150300	lumi	
	GSD file: Node in PROFINET Device number: IP address: IP Address: Comment:	GSDML-V2.1-Deutechma Change Release Numb IO System 172.15.48.64 a via IO controller	nn-UNIGATE-IC-PN-max5128 er PROFINET-IO-System (1 Bhemet	20110615-150300	lumi	

13.3 **PROFINET** device name

Note: In delivery condition, the gateway does not have a device name!

The device name is assigned to the gateway via the configuration software. Alternatively, the device name can be changed via FTP (file "devname.txt").

For the device name, considering the Profinet specification, the following rules apply:

- * It consists of one or more name parts seperated through a full stop
- * the total length is from 1 to 240 characters.
- * the length of a name part is from 1 up to 63 characters.
- * a name consists of only lowercase letters, numbers and the hyphen.
- * neither the first nor the last character of a name is a hyphen.
- * the first part of the name does not begin with "port-xyz" or "port-xyz-abcde", whereas a, b,
- c, d, e, x, y and z are seen as numerals.
- * it doesn't have the form "k,I,m,n", where k, I, m and n are numbers between 0 and 999

Now that the device has been added to the project, the device name must be stored in the respective device. This must match the current device name, that was entered in the properties window of the device, so that the device can be detected by the master afterwards.

There are two ways to assign the device name to the corresponding device.

1. possibility: In the hardware configuration

First of all the device must be marked in the hardware configuration.

Then go to "Zielsystem" in the menu and under Ethernet select "Gerätename vergeben".

Station Bearbeiten Einfügen	Zielsystem Ansicht Extras Fenster Hilfe	
] D 🗲 🔐 🗣 👫 🎒 🎼	Laden in Baugruppe Ctrl+L Laden in PG	
₽(0) UR	Baugruppen-Identifikation laden Baugruppen-Identifikation laden in PG	ET-IO-System (100)
2 CPU 315-2 PN/DP	Gestörte Baugruppen	
X2 PN-10 3 4 5 4	Baugruppenzustand Ctrl+D Betriebszustand Ctrl+I Urlöschen Uhrzeit stellen Beobachten/Steuern Eeobachten/Steuern	
(1) r1001port	Firmware aktualisieren	
Steckplatz Baugruppe	Gerätenamen auf Memory Card speichern	
0 i1001port	Ethernet 🔸	Ethernet-Teilnehmer bearbeiten
1 IN/OUT: 008 byt 2 INPUT: 008 byte	PROFIBUS	Gerätenamen überprüfen
	Servicedaten speichern	Gerätenamen vergeben

In the next window the desired device name can be chosen via the Dropdown-Menu and can then be assigned via the button "Name zuweisen."

handene Geräte:					
-Adresse MAC-Adresse	e Gerätetyp	Gerätename	Nam	ne zuweisen	
00-14-11-77-	52-E3 UNIGATE-IC		– Teilnel	hmer-Blinktest —	
			Dauer	(Sekunden):	3 -
			Blin	ken ein Bl	inken aus
nur Geräte gleichen Typ	s anzeigen 🔲 nur	Geräte ohne Name	n anzeigen		
Aktualisieren	Exportieren	1			

Second possibility: Project view

In the project via Menu point "Zielsystem" select "Ethernet-Teilnehmer bearbeiten...)

If you click the button "Durchsuchen" in the following window, all PROFINET participants will be shown.

		Online erreichbare Teilnehmer
IAC-Adresse:		Durchsuchen
Konfiguration einstelle	n	
IP-Parameter verwer	nden	
ID A damage		Netzübergang
IP-Adresse:		Keinen Router verwenden
Subnetmaske:		C Router verwenden
		Adresse:
Client-ID	C MAC Adresse	C Gerätename
Client-ID Client-ID: IP-Konfiguration.zuwe	MAC Adresse	C Gerätename
Client-ID Client-ID Client-ID: IP-Konfiguration zuwe erätename vergeben-	C MAC Adresse	C Gerätename
Client-ID Client-ID Client-ID Client-ID IP-Konfiguration zuwe ierätename vergeben - Gerätename:	C MAC Adresse	C Gefätename
Client-ID Client-ID Client-ID Client-ID Gerätename vergeben Gerätename:	C MAC Adresse	C Gerätename
Client-ID: Client-ID: IP-Konfiguration zuwe terätename vergeben Gerätename: tücksetzen auf Werkse	C MAC Adresse	C Gerätename Name zuweisen Zurücksetzen

Via the list of the found participants, you can now select the desired participant from the displayed MAC addresses, mark them and confirm it by clicking the "OK" button.

The MAC address of the ROTARNOCK100 can be found on the nameplate.

thernet-Teilnehm	er bearbeiten			>
Ethernet Teilnehm	er			
		Online err	eichbare Teilneh	mer
MAC-Adresse:	1	Durchs	suchen	
- IP-Konfiguration ei	nstellen			
etz durchsuchen ·	2 Teilnehmer			2
Starten	! IP-Adresse	MAC-Adresse	Gerätetyp	Gerätename
Anhalten	0.0.0.0 172.16.48.60	00-14-11-77-52-E3 08-00-06-99-39-04	UNIGATE-IC S7-300	PN-IO
🔽 schnell suchen				
Blinken				Þ
	MAC-Adresse:	<u></u>	_	
OK			Abbrechen	Hilfe
- Hucksetzen auf W	erkseinstellungen			s (
			Zurück	setzen
1				2 (7555)
Schließen				Hilfe

The subsequent window displays the MAC address of the chosen ROTARNOCK 100. In the lower section of the window, under "Gerätenamen vergeben", you can now store the device name that you assigned in properties earlier.

With clicking the button "Name zuweisen" the name will be transmitted.

CHORE CHI CHINEL		
		Online erreichbare Teilnehmer
IAC-Adresse: 🤇	00-14-11-77-52-E3	Durchsuchen
² -Konfiguration einstelle	en	
IP-Parameter verwer	nden	
		Netzübergang
IP-Adresse:		Keinen Router verwenden
Subnetmaske:		C Router verwenden
		Adresse:
Client-ID	C MAC Adresse	C Gerätename
Client-ID	C MAC Adresse	C Gerätename
Client-ID Client-ID:	C MAC Adresse	C Gerätename
Client-ID Client-ID: IP-Konfiguration zuwe ierätename vergeben-	C MAC Adresse	C Gerätename
Client-ID Client-ID: IP-Konfiguration zuwe ierätename vergeben Gerätename:	C MAC Adresse	C Gerätename
Client-ID Client-ID: IP-Konfiguration zuwe erätename vergeben Gerätename: C	MAC Adresse eisen walze instellungen	C Gerätename
Client-ID Client-ID: IP-Konfiguration zuwe erätename vergeben- Gerätename: ücksetzen auf Werkse	C MAC Adresse	C Gerätename Name zuweisen Zurücksetzen

As a last point an info window will pop up, which tells you that the parameter were transferred successfully.

When the whole project was loaded and transferred, and after you restarted the CPU, the flickering green LED on the ROATARNOCK 100 should be lighting with a static green.

13.4 LED-PN

The green LED shows the bus status and can have the following conditions.

Condition	LED	State
Off	-	Bus not started
Flash	green/yellow/red	10 Hz Error
Flash	green	2 Hz Bus started, waiting for connection / configuration mode
Flash	green/yellow/red	1 Hz PROFINET participant flash-test
On	green	Connection made

13.5 Programming of the cams

All required parameters are stored in the DB1, so only the parameter table in the AWL format, which is generated by means of WINLOC32 data block generator, must be integrated.

It is possible to carry out the complete programming of the required cams, as well as programs on WINLOC32. These parameters only have to be converted as a parameter table in the AWL format. For this, the same procedure is used when a virgin DB is created, with the exception that immediately after clicking "File" in the menu -> "Create" must be selected. Following you get a AWL file, which can be integrated into the project directly.

First, highlight "sources" in the project tree. Then, using the right mouse button, choose "Insert New Object". You get to the point "external source" through "Neues Objekt einfügen".

The AWL file can be chosen in the subsequent window.

Externe Que	le einfügen		? ×
Suchen in:	C ROTARNOCK	- 🗈 💣 🎫	
DB1.awl DB2.awl DB3.awl DB4.awl			
Dateiname:		Öffne	n
Dateityp:	Quellen (*.awl;*.gr7;*.scl;*.inp;*.zg;*.sdg;*.sd	bbrec	hen

Highlight the AWL file. The AWL file can now be translated into the data block.

29.7.21

In the online view all parameters which are stored in the parameter table of the AWL file are shown.

For that choose the "glasses" in DB1.

Image: style="text-align: center;">KOP/AWL/FUP - "DB_NSW" R100_FB_DB_TEST_2\SIMATIC 315-2 DP/PN\EPU 315-2 PN/DP\\DB1]				
🗊 Datei Bearbeiten Einfügen Zielsys	tem Test A	nsicht Extras Fenster Hilfe		
🗅 🛩 🔓 📮 🎒 🕺 🖻 💼	K) C≥ 0 ^m / ₁	🚵 🖂 🗣 😚 !« >! 🔲	🖾 💦	
	+10.0	Output17to24	BYTE	B#16#0
	+11.0	Output25to32	BYTE	B#16#0
🖅 👭 Bibliotheken	=12.0		END_STRUCT	
	+48.0	Idle_Table	STRUCT	
	+0.0	Idle	ARRAY[12]	
	*0.0		STRUCT	
	+0.0	ProgNo	BYTE	B#16#0
	+1.0	Output	BYTE	B#16#0
	+2.0	IdleT_On	WORD	W#16#0
	+4.0	IdleT_Off	WORD	W#16#0
	=6.0		END_STRUCT	
	=12.0		END_STRUCT	
	+60.0	Control_Table	STRUCT	
	+0.0	New_Prog	BYTE	B#16#0
	+1.0	Teach_In_Zero	BOOL	FALSE
	+1.1	Invert_Encoder	BOOL	FALSE
	+1.2	Error_Quit	BOOL	FALSE
	+1.3	Res_03	BOOL	FALSE
	+1.4	Res_04	BOOL	FALSE
	+1.5	Res_05	BOOL	FALSE
	+1.6	Res_06	BOOL	FALSE
	+1.7	Res_07	BOOL	FALSE
	+2.0	Res_0	BYTE	B#16#0
	+3.0	Res_1	BYTE	B#16#0
	+4.0	Res_2	BYTE	B#16#0
	+5.0	Res_3	BYTE	B#16#0
	=6.0		END_STRUCT	_
	+66.0	CAM_MT_Table	STRUCT	
	+0.0	Cam_MT	ARRAY[12]	
	*0.0		STRUCT	
	+0.0	ProgNo	WORD	W#16#0
	+2.0	Output	WORD	W#16#0
	+4.0	On	DWORD	DW#16#0
	+8.0	Off	DWORD	DW#16#0
	=12.0		END_STRUCT	-
	=24.0		END_STRUCT	
	+90.0	Direction_Cam_N_Table	STRUCT	
₹ <u>≺</u>	+0.0	Direction_Cam_N	ARRAY[16]	
	*1.0		BYTE	
	=6.0	2011	END_STRUCT	-
	=96.0		END_STRUCT	
× 	io / 3:0)uerverweise 入 4: Operandeninf	o 入 5:Steuern)	∖ 6: Diagnose

Drücken Sie F1. um Hilfe zu erhalten.

Online view of the DB1

Datei Bearbeiten Einrugen Zielsy	stem Test Ansicht Extras Henster Hilfe			
D 🗲 🔓 🖬 🖨 🐰 🖻 🖪	·· · · · · · · · · · · · · · · · · · ·			
X	42.0 Processdata_Long_Table.Act_Prog	BYTE	B#16#0	B#16#00
	43.0 Processdata_Long_Table.ErrorNo	BYTE	B#16#0	B#16#00
🖅 👭 Bibliotheken	44.0 Processdata_Long_Table.Outputlto8	BYTE	B#16#0	B#16#00
	45.0 Processdata_Long_Table.Output9to16	BYTE	B#16#0	B#16#00
	46.0 Processdata_Long_Table.Output17to24	BYTE	B#16#0	B#16#00
	47.0 Processdata_Long_Table.Output25to32	BYTE	B#16#0	B#16#00
	48.0 Idle_Table.Idle[1].ProgNo	BYTE	B#16#0	B#16#00
	49.0 Idle_Table.Idle[1].Output	BYTE	B#16#0	B#16#01
	50.0 Idle_Table.Idle[1].IdleT_On	WORD	W#16#0	W#16#01F4
	52.0 Idle_Table.Idle[1].IdleT_Off	WORD	W#16#0	W#16#01F4
	54.0 Idle Table.Idle[2].ProgNo	BYTE	B#16#0	B#16#00
	55.0 Idle_Table.Idle[2].Output	BYTE	B#16#0	B#16#02
	56.0 Idle_Table.Idle(2].IdleT_On	WORD	W#16#0	W#16#01F4
	58.0 Idle_Table.Idle[2].IdleT_Off	WORD	W#16#0	W#16#01F4
	60.0 Control_Table.New_Prog	BYTE	B#16#0	B#16#00
	61.0 Control_Table.Teach_In_Zero	BOOL	FALSE	FALSE
	61.1 Control_Table.Invert_Encoder	BOOL	FALSE	FALSE
	61.2 Control_Table.Error_Quit	BOOL	FALSE	FALSE
	61.3 Control_Table.Res_03	BOOL	FALSE	FALSE
	61.4 Control_Table.Res_04	BOOL	FALSE	FALSE
	61.5 Control_Table.Res_05	BOOL	FALSE	FALSE
	61.6 Control_Table.Res_06	BOOL	FALSE	FALSE
	61.7 Control_Table.Res_07	BOOL	FALSE	FALSE
	62.0 Control_Table.Res_0	BYTE	B#16#0	B#16#00
	63.0 Control_Table.Res_1	BYTE	B#16#0	B#16#00
	64.0 Control_Table.Res_2	BYTE	B#16#0	B#16#00
	65.0 Control_Table.Res_3	BYTE	B#16#0	B#16#00
	66.0 CAM_HT_Table.Cam_HT[1].ProgNo	WORD	W#16#0	W#16#0000
	68.0 CAM_HT_Table.Cam_HT[1].Output	WORD	W#16#0	W#16#0001
	70.0 CAM_MT_Table.Cam_MT[1].On	DWORD	DW#16#0	DW#16#0000000
	74.0 CAM_HT_Table.Cam_HT[1].Off	DWORD	DW#16#0	DW#16#0000064
	78.0 CAM_MT_Table.Cam_MT[2].ProgNo	WORD	W#16#0	W#16#0000
	80.0 CAM_MT_Table.Cam_MT[2].Output	WORD	W#16#0	W#16#0002
	82.0 CAM_MT_Table.Cam_MT[2].On	DWORD	DW#16#0	DW#16#0000000
	86.0 CAM_MT_Table.Cam_MT[2].Off	DWORD	DW#16#0	DW#16#0000064
	90.0 Direction_Cam_N_Table.Direction_Cam_N[1]	BYTE	B#16#0	B#16#01
	91.0 Direction_Cam_N_Table.Direction_Cam_N[2]	BYTE	B#16#0	B#16#02
	92.0 Direction_Cam_N_Table.Direction_Cam_N[3]	BYTE	B#16#0	B#16#00
	93.0 Direction_Cam_N_Table.Direction_Cam_N[4]	BYTE	B#16#0	B#16#00
	94.0 Direction_Cam_N_Table.Direction_Cam_N[5]	BYTE	B#16#0	B#16#00
Programm	95.0 Direction_Cam_N_Table.Direction_Cam_N[6]	BYTE	B#16#0	B#16#00

14 Reaction time of cam controls at hardware-program shift

The measurement of the reaction time was carried on the example of the devices LOCON 24 MPI, version 4.03 and ROTARNOCK 2 PROFIBUS, version 5.3.

The handling component for ROTARNOCK-DP PLC-SPS was used. This handling component is available for download from our website at http://www.deutschmann.de/download. Please note that the reaction time depends on the size of the data block.

A Ref DB and a data block were used for LOCON 24 with MPI.

The following check program was additionally inserted into the organization component 1:

L EB 0	- Load hardware button for P1
T DB1.DBB234	- Write value in New-ProgNo.

14.1 Reaction time LOCON 24 MPI

A full cam was programmed in program 1. The MPI-data rate is 187.5 Kbit/s fixed.

Switch	Output	Full cam	Reaction time
P1	A1	0-360	< 1 second

14.2 Reaction time ROTARNOCK 2 - PROFIBUS

A full cam was programmed in program 1

Switch	Output	Full cam	Reaction time	Profibus-DP data rate
P1	A1	0-360	< 500 ms	12 Mbit/s
P1	A1	0-360	< 500 ms	500 Kbit/s

Schematical representation of the test setup

15 Error messages

Complementary to the error messages (see chapter "Error messages" in the instruction manual for ROTARNOCK or LOCON 24, 48, 64) the following error messages are possible for cam controls with fieldbus connection:

Error			
number	Meaning	Remark	
6	Error in the MPI-configuration	MPI-ID > 32	
9	Error in the internal communication between pro- cessor and fieldbus-chip	Restart the device or send it in	
36	Addressed data component not existent in the S7	E. g. DB1 not existent at Profibus	
43	No connection between ROTARNOCK and S7	E. g. wrong setting of the ID Defective connection cable	
80	Error in the structure of the S7-data component	DB-number might be set the wrong way. Generate the data component again with the generator	
22	Error when saving a cam value	Wrong value (e. g. too big)	
82	Logic confic error	Logic not configures	

15.1 Status LED at the ROTARNOCK

In the operating state the LED lights up red to the "zero point". A LED that flashes red (4 times as fast as in case of a "regular" error) indicates an error, which can be analysed by means of the above stated table. The number can either be seen via the diagnosis data from PROFIBUS or via the RS232-interface of the WINLOC-online-window.

16 Servicing

Should questions arise that are not covered in this manual you can find further information in our

- FAQ/Wiki area on our homepage www.deutschmann.com or directly in our Wiki on www.wiki.deutschmann.de
- Corresponding Manual of the used Cam Control

If your questions are still unanswered please contact the responsible sales partner (see www.deutschmann.com) or contact us directly.

Please note down the following information before calling:

- Device designation
- Serial number (S/N)
- Article number
- Error number and error description

You can reach us during hotline hours which are as follows:

Monday to Thursday from 8 am to midday and from 1 pm to 4 pm, Friday from 8 am to midday (CET).

Deutschmann Automation GmbH & Co. KG Carl-Zeiss-Straße 8 D-65520 Bad Camberg Germany Central office and sales department +49 6434 9433-0 Technical hotline +49 6434 9433-33

Fax sales department	+49 6434 9433-40
Fax technical hotline	+49 6434 9433-44

E-mail technical Hotline hotline@deutschmann.de

16.1 Returning a unit

If you return a unit to us, we require as comprehensive a description of the error as possible. We require the following information in particular:

- What error number was displayed?
- How is the unit externally wired (encoders, outputs, ..)? Please state all connections of the unit.
- What is the magnitude of the 24V supply voltage (± 0.5V) with connected LOCON?
- What were you last doing on the unit (programming, error on power-up, ...)?

The more precise your information and error description, the more precisely we can check the possible causes.

29.7.21

16.2 Internet

On our Internet-homepage (URL) various software can be loaded. Beyond that you will also find topical information on Deutschmann products, instruction manuals and a list of our distribution partners.

URL: www.deutschmann.de

S7 example projects for:

		PROFIBUS ID
ROTARNOCK 4:	ID3231V1.zip	8
ROTARNOCK 4 Logic:	ID3231V2.zip	8
ROTARNOCK 2:	ID2935V1.zip	8
ROTARNOCK 2 MT:	ID2935V2.zip	8
LOCON 24:	ID2079V1.zip	126
LOCON 24 MT:	ID2079V2.zip	126
R100 / L100:	R100V1Pa.zip	8

29.7.21