

AN_DK60-Unigate_Example_V1.0.pdf
© Beck IPC GmbH

E-Mail: info@beck-ipc.com
www.beck-ipc.com
A member of the Festo group

Beck IPC GmbH
Grüninger Weg 24
35415 Pohlheim-Garbenteich

IPC@CHIP » Application Note

UNIGATE@CHIP: DK60 as a PROFIBUS slave
This application note describes how to use the PROFIBUS function kit from
Deutschmann Automation GmbH & Co. KG on the DK60. This function kit consists
of a PROFIBUS slave module (UNIGATE IC PROFIBUS) and the
UNIGATE@CHIP adapter.

Please note, that the UNIGATE modules have the advantage of using a script
language for customizing the serial port protocol. A tool for downloading
customized scripts to the UNIGATE modules is available from Deutschmann
Automation GmbH & Co. KG.

This application note is based on the contents of the accompanying ZIP-archive
"AN_Unigate_Example_V1.0.zip". It only describes the communication between
the IPC@CHIP and the PROFIBUS function kit based on the serial protocol
explained in chapter “Concept”.

Background
The PROFIBUS function kit utilizes the connectors for UART0 (S40 & S42),
UART1 (S41 & S43) and CAN1 (S38). For data communication between the
PROFIBUS module and the IPC@CHIP® SC143 only UART0 and two PIOs (14 &
15) are used. The connection to UART1 is only for mechanical purposes and does
not affect communication on this port in any way.

The application within the accompanying ZIP-archive shows an example of how to
initialize the field bus module and read and write data from / to the bus. For getting
this example application working it is necessary to have a PROFIBUS master
system (PLC), which loops back the received data to the slave. The aim is to write
the current state of the DIP switch on the DK60 to the field bus, get it read back
from the master and show it on the LEDs on the DK60.

This is done in a strictly response-by-request basis which means every single
request has to follow a response, before another request can be send. This should
be taken into account when setting up a communication concept based on this
application note, because a communication where telegrams could be send and
received in an arbitrary order would need an own and more complex message
handling system.

For use with the example in the ZIP-archive named above there is also a CoDeSys
2.3 project file included for use with the PROFIBUS master PLC, which does this
loopback. If you want to use this for your own evaluation, please make sure to use
the settings for the UNIGATE field bus module as shown below:

AN_DK60-Unigate_Example_V1.0.pdf
© Beck IPC GmbH

E-Mail: info@beck-ipc.com
www.beck-ipc.com
A member of the Festo group

Beck IPC GmbH
Grüninger Weg 24
35415 Pohlheim-Garbenteich

It is important to select the “1 Byte Inp. 1 Byte Outp. (kons.)” from the list on the left
side to get the value of 1 Byte for “Length of input data” and “Length of output data”
(marked red). These settings belong directly to the parameters
“BusDataLenToIPC” and “BusDataLenFromIPC” discussed later in this application
note. Please note, that also the station address of the UNIGATE field bus module
has to match the setting in the CoDeSys PLC configuration. With this conditions
met, the example application is ready for operation.

The PLC program itself is as simple as possible (structured text):

Concept
The current serial communication model between the UNIGATE field bus module
and the IPC@CHIP® SC143 is also a master/slave system. The IPC@CHIP®
SC143 is the master while the UNIGATE field bus module is the slave. In the
defined protocol of the UNIGATE field bus module every instruction sequence has
to start with a request from the master, followed by a response from the slave.

Based on the datagrams below, the protocol between the IPC@CHIP® and the
UNIGATE field bus module will be explained.
+------+------+-------+-------+-…-+-------+---------+---------+
| LenH | LenL | Type | Byte1 | … | ByteN | ~CheckH | ~CheckL |
+------+------+-------+-------+-…-+-------+---------+---------+
 \ /
 \ data block /

AN_DK60-Unigate_Example_V1.0.pdf
© Beck IPC GmbH

E-Mail: info@beck-ipc.com
www.beck-ipc.com
A member of the Festo group

Beck IPC GmbH
Grüninger Weg 24
35415 Pohlheim-Garbenteich

Every telegram consists of a length information field (2 bytes), followed by a
number of data bytes (N bytes data block) and is completed by a checksum (2
bytes). The length field states the number of bytes following including the 2
checksum bytes. The checksum is a byte-by-byte sum of all bytes excluding the 2
checksum bytes themselves and is finally inverted. Both words are transferred with
the high byte first.

In dependence of the type field there are three possible telegram types. Every data
block starts with a type identifier, followed by 3 control bytes and possibly some
data bytes:

Type = 0 (reserved)

Type = 1 (request)
+---+--------+---------+---------+-----------+- … -+-----------+
| 1 | ID | Para-No | Command | Req.Dat0 | … | Req.DatN |
+---+--------+---------+---------+-----------+- … -+-----------+

Type = 2 (response)
+---+--------+---------+---------+-----------+- … -+-----------+
| 2 | ID | Para-No | State | Resp.Dat0 | … | Resp.DatN |
+---+--------+---------+---------+-----------+- … -+-----------+

The single fields are explained as follows:

ID: An identification of the data records so that a response telegram
 can be assigned clearly to a request telegram. This identification
 number can be incremented simply e.g. with each new inquiry.

Para-No: The indication, which parameter is to be read and/or written. A list
 of the supported parameters with indication of the data length
 and/or the construction of data is in the appendix. Valid values are:
 1 = BusDataLenFromIPC
 2 = BusDataLenToIPC
 3 = BusStart
 4 = BusData

Command: The command of the request is defined here. Valid values are:
 0 = read, 1 = write

State: The result of the former request is stated here. Valid values are:
 0 = ok, 1 = error (error code is in the byte "Resp.Dat0")

For a list of examples on how some datagrams look like, see the appendix.

In general, a few simple steps have to be followed for setting up the UNIGATE field
bus slave module and to get into the data exchange mode:

1.) Hardware reset and start in “normal mode”
2.) Parameter “BusDataLenFromIPC” has to be written
3.) Parameter “BusDataLenToIPC” has to be written
4.) Command “BusStart” has to be written

If all the parameter and command requests are successfully written without any
error in the response (see field “state” above), the field bus module will be ready for
transceiving data from / to bus.

AN_DK60-Unigate_Example_V1.0.pdf
© Beck IPC GmbH

E-Mail: info@beck-ipc.com
www.beck-ipc.com
A member of the Festo group

Beck IPC GmbH
Grüninger Weg 24
35415 Pohlheim-Garbenteich

Implementation
The software archive (ZIP-archive) contains the ready-to-run application
“DK60_unigate.exe” and also the sources for this application example.

The sources consist of the application itself called “DK60_Unigate.c”, the UNIGATE
driver “unigate.c” and another module called “pio.c” which is used by the
application to get access to the DIP switch and LEDs.
In addition there is a project file “DK60_Unigate.pdl“ for the Paradigm C++ compiler
Beck IPC edition, which can be used for quick evaluation and starting an own
development. The structure of the project is shown below:

For getting access to the field bus module as described above, the driver
“unigate.c” provides three major functions:

• Init_UNIGATE()
• WriteBus()
• ReadBus()

These functions are described briefly below. For more information, please refer to
the source code of the driver “unigate.c”. In addition, all main parameters used
within the driver can be easily modified through corresponding defines in the
header file of the driver (“unigate.h”).

1. unsigned char Init_UNIGATE (unsigned int BusDataLenFromIPC,
 unsigned int BusDataLenToIPC)

This function does the four-step initialization procedure as described
 above in addition to setup the UART0 port. The current settings for this
 communication port to the UNIGATE are:

• Baud rate: 9600
• Data bits: 8
• Stop bits: 1
• Parity: None

 It returns either “0” if initialization procedure was ok or an error code “1” to
 “5” depending on the occurred error as defined in the header file
 “unigate.h”. Please see the source code for more detailed information.

2. unsigned char WriteBus (unsigned char *SendData,
 unsigned int AnzahlByteToSend)

 This function writes a given number of bytes from a given buffer to the
 field bus module. It returns always “0”. Please see the source code for
 more detailed information.

3. unsigned char ReadBus (unsigned char *RecvData,
 unsigned int *AnzahlByteToRecv)

 This function reads a given number of bytes from the UNIGATE into a
 given buffer. It returns either “0” if reading was ok or error code “3” if there
 was a timeout while reading. Please see the source code for more detailed
 information.

31.10.2007 B. Große

AN_DK60-Unigate_Example_V1.0.pdf
© Beck IPC GmbH

E-Mail: info@beck-ipc.com
www.beck-ipc.com
A member of the Festo group

Beck IPC GmbH
Grüninger Weg 24
35415 Pohlheim-Garbenteich

Appendix

Following is a list of possible example datagrams used for initialization and data
exchange according to the protocol specification. For easier understanding the
leading length and the final checksum fields were omitted.

BusDataLenFromIPC (write)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+----------+----------+ +---+----+---+---+
| 1 | ID1 | 1 | 1 | DataLenH | DataLenL | | 2 | ID1 | 1 | 0 |
+---+----+---+---+----------+----------+ +---+----+---+---+

BusDataLenFromIPC (read)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+ +---+----+---+---+----------+----------+
| 1 | ID2 | 1 | 0 | | 2 | ID2 | 1 | 0 | DataLenH | DataLenL |
+---+----+---+---+ +---+----+---+---+----------+----------+

BusDataLenToIPC (write)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+----------+----------+ +---+----+---+---+
| 1 | ID3 | 2 | 1 | DataLenH | DataLenL | | 2 | ID3 | 2 | 0 |
+---+----+---+---+----------+----------+ +---+----+---+---+

BusDataLenToIPC (read)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+ +---+----+---+---+----------+----------+
| 1 | ID4 | 2 | 0 | | 2 | ID4 | 2 | 0 | DataLenH | DataLenL |
+---+----+---+---+ +---+----+---+---+----------+----------+

BusStart (without error reported)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+ +---+----+---+---+
| 1 | ID5 | 3 | 1 | | 2 | ID5 | 3 | 0 |
+---+----+---+---+ +---+----+---+---+

BusStart (with error reported)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+ +---+----+---+---+-----------+
| 1 | ID6 | 3 | 1 | | 2 | ID6 | 3 | 1 | ErrorCode |
+---+----+---+---+ +---+----+---+---+-----------+

BusData (read)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+ +---+----+---+---+---------+-…-+---------+
| 1 | ID7 | 4 | 0 | | 2 | ID7 | 4 | 0 | BusDat0 | … | BusDatN |
+---+----+---+---+ +---+----+---+---+---------+-…-+---------+

BusData (write)
Request (from IPC): Response (from UNIGATE):
+---+----+---+---+-------+-…-+--------+ +---+----+---+---+
| 1 | ID8 | 4 | 1 |BusDat0| … |BusDataN| | 2 | ID8 | 4 | 0 |
+---+----+---+---+-------+-…-+--------+ +---+----+---+---+

