

Bedienerhandbuch Universal Feldbus-Gateway UNIGATE[®] CL - MPI

Deutschmann Automation GmbH & Co. KG www.deutschmann.de | wiki.deutschmann.de

Handbuch Art.-Nr.: V3583

1	Hinweise zur CE-Kennzeichnung der Baugruppe	. 8
	1.1 EU-Richtlinie EMV	. 8
	1.2 Einsatzbereich	. 8
	1.3 Aufbaurichtlinien beachten	. 8
	1.4 Einbau des Gerätes	. 8
	1.5 Arbeiten an Schaltschränken	. 8
2	Hinweise für den Hersteller von Maschinen	. 9
	2.1 Einleitung	. 9
_		. 9
3	Einführung	10
	3.1 UNIGATE [®] CL Software Flussdiagramm	11
	3.2 UNIGATE® Blockdiagramm	12
		12
4		13
	4.1 Konfigurationsmodus (config mode)	13
	4.2 Testmodus (test mode)	13
-	4.3 Datenaustauschmodus (data exchange mode)	14
5		15
	5.1 RS-Schnittstellen beim UNIGATE® CL	15
	5.2 Pullergroßen beim UNIGATE [°] CL	10
~		
6		10
	6.1 Indetriednanme der SSI-Schnittstelle	10
	6.2 Parameter	10
	6.2.2 SSI Encoder Type	16
	6.2.3 Parameter Abtastfrequenz (Clock stretch)	16
	6.2.4 Parameter Geberüberwachung (Check Encoder)	17
	6.3 Hardware- Beschaltung	17
7	Die Debug Schnittstelle	18
-	7.1 Übersicht über die Debug Schnittstelle	18
	7.2 Start im Debugmode	18
	7.3 Kommunikationsparameter für die Debugschnittstelle	18
	7.4 Möglichkeiten mit der Debug Schnittstelle	18
	7.5 Befehle der Debug Schnittstelle	18
8	Funktionsweise des Systems	19
	8.1 Allgemeine Erläuterung	19
	8.2 Schnittstellen	19
	8.3 Datenaustausch	19
	8.4 Mögliche Datenlängen	19
		19
•		19
9		20
	9.1 Was ist ein Script	20
	9.2 Speicheremizienz der Programme	20

	9.3 Was kann man mit einem Script Gerät machen	. 20
	9.4 Unabhängigkeit von Bussen	. 20
	9.5 Weitere Einstellungen am Gateway	. 20
	9.6 Die Benutzung des Protocol Developer	. 21
	9.7 Genauigkeiten der Baudraten	. 21
	9.8 Scriptabarbeitungszeiten	. 22
10	Implementierte Protokolle im UNIGATE [®] CL mit Universalscript	. 23
	10.1 Protokoll: Transparent	. 23
	10.1.1 Datenaufbau	23
	10.2 Protokoll: Universal 232	. 23
	10.2.1 Datenaufbau	24
	10.2.2 Parameter Feldbus	24
	10.2.3 Parametertabelle RS232	24
	10.2.3.1 Startzeichen (232 Start character)	24
	10.2.3.2 Länge232 (232 Length)	24
	10.2.3.3 Timeout	24
	10.2.3.4 Datenbereich	24
	10.2.3.5 Endezeichen (232 End character)	25
	10.2.4 Kommunikationsablauf	25
	10.3 Protokoll "Universal Modbus RTU Slave"	. 25
	10.3.1 Datenaufbau Feldbusseite z.B.: PROFIBUS	25
	10.3.1.1 Beispiel: FC1 + FC2	25
	10.3.1.2 Beispiel: FC3 (Read Holding Register) + FC4 (Read Input Register)	26
	10.3.1.3 Beispiel: Schreibe Single Coil FC5	27
	10.3.1.4 Beispiel: Write Single Register FC6	28
	10.3.1.5 Beispiel: Force multiple coils FC 15	29
	10.3.1.6 Beispiel: Preset multiple register FC16	30
	10.4 Protokoll "Universal Modbus RTU Master"	. 30
	10.4.1 Datenaufbau Feldbusseite (z.B. PROFIBUS):	30
	10.4.2 Datenaufbau Applikationsseite:	31
	10.4.3 Konfiguration: über Wingate ab wcf Datei Version 396	32
	10.4.3.1 Beispiel: Read coil status FC1	33
	10.4.3.2 Beispiel: Read input status FC2	34
	10.4.3.3 Beispiel: Read multiple register FC3	35
		36
	10.4.3.5 Beispiel: Force single coll FC5	
		37
	10.4.3.7 Beispiel: Force multiple colls FC15	37
	10.4.3.8 Beispiel: Preset multiple register FC16	38
	10.5 Protokoli "Universal Modbus ASCII Master/Slave	. 39
	10.0 PIOLOKOII SSI	. 39
		. 39
		. 39
11	Hardware-Anschlüsse, Schalter und Leuchtdioden	. 40
	11.1 Gerätebeschriftung	. 40
	11.2 Stecker	. 40
	11.2.1 Stecker zum externen Gerät (RS-Schnittstelle)	40

	11.2.2 Stecker Versorgungsspannung und DEBUG-Schnittstelle	41
	11.2.3 MPI-Bus-Stecker	41
	11.2.4 Stromversorgung	41
	11.3 Leuchtanzeigen	. 41
	11.3.1 LED (Bus) Power	42
	11.3.2 LED BUS	42 40
	11.3.4 LED (Bus) State	42 //2
	11 3 5 J ED "State"	+2 12
	11.3.6 LED State $1/2/4/8$ (Error No/Select ID)	··· 42
	11.4 Schalter	42
	11.4.1 Termination Rx 422 + Tx 422 (serielle Schnittstelle)	42
	11.4.2 Drehcodierschalter S4 + S5 (serielle Schnittstelle)	43
	11.4.3 Termination (MPI)	43
	11.4.4 Drehcodierschalter High + Low (MPI-Bus-ID)	43
	11.5 Debug-Kabel für UNIGATE [®] CL	. 43
12	Fehlerbehandlung	. 44
	12.1 Fehlerbehandlung beim UNIGATE [®] CL	. 44
13	Aufbaurichtlinien	46
	13.1 Montage der Baugruppe	46
	13.1.1 Montage	0
	13.1.2 Demontage	46
	13.2 Verdrahtung	. 46
	13.2.1 Anschlusstechniken	46
	13.2.1.1 Stromversorgung	47
	13.2.1.2 Anschluss des Potentialausgleichs	47
	13.2.2 Kommunikationsschnittstelle MPI-Bus	47
	13.2.2.1 Busleitung mit Kupferkabel	47
	13.2.3 Leitungsführung, Schirmung und Maßnahmen gegen Störspannung	47
	13.2.4 Allgemeines zur Leitungsführung	47
	13.2.4.1 Schirmung von Leitungen	48
14	Darstellung der Daten in einer S7	. 49
	14.1 Datenaustausch	. 49
15	Technische Daten	. 50
	15.1 Gerätedaten	. 50
	15.1.1 Schnittstellendaten	51
16	Inbetriebnahmeleitfaden	. 52
	16.1 Beachte	. 52
	16.2 Komponenten	. 52
	16.3 Montage	. 52
	16.4 Maßzeichnung UNIGATE [®] CL-MPI	. 52
	16.5 Inbetriebnahme	. 53
	16.6 MPI-Bus-Adresse einstellen	. 53
	16.7 MPI-Bus Anschluss	. 53
	16.8 Anschluss des Prozessgerätes	. 53
	16.9 Versorgungsspannung anschließen	. 53

	16.10 \$ 16.11	Schirmanschluss	53 53
17	Servio	ce	54
	17.1 I	Einsendung eines Gerätes	54
	17.2 I	Download von PC-Software	54
18	Anhar	ng	55
	18.1 I 18.2 I	Erläuterung der Abkürzungen	55 56
	18.1 I 18.2 I	Erläuterung der Abkürzungen	5 5

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in der Druckschrift werden jedoch regelmäßig überprüft. Notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten. Für Verbesserungsvorschläge sind wir dankbar.

Copyright

Copyright (C) Deutschmann Automation GmbH & Co. KG 1997 – 2021. All rights reserved. Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung Ihres Inhalts sind nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalten, insbesondere für den Fall der Patenterteilung oder PM-Eintragung.

1 Hinweise zur CE-Kennzeichnung der Baugruppe

1.1 EU-Richtlinie EMV

Für die in dieser Betriebsanleitung beschriebenen Baugruppe gilt:

Produkte, die das CE-Kennzeichen tragen, erfüllen die Anforderungen der EU Richtlinie "Elektromagnetische Verträglichkeit" und die dort aufgeführten harmonisierten europäischen Normen (EN).

Die EU-Konformitätserklärungen werden gemäß der EU-Richtlinie, Artikel 10, für die zuständigen Behörden zur Verfügung gehalten bei:

Deutschmann Automation GmbH & Co. KG, Carl-Zeiss-Str. 8, 65520 Bad Camberg

1.2 Einsatzbereich

Die Baugruppen sind ausgelegt für den Einsatz im Industriebereich und erfüllen die folgenden Anforderungen.

Einsatzbereich	Anforderung an		
	Störaussendung	Störfestigkeit	
Industrie	EN 55011, cl. A (2007)	EN 61000-6-2 (2005)	

1.3 Aufbaurichtlinien beachten

Die Baugruppe erfüllt die Anforderungen, wenn Sie

- 1. bei Installation und Betrieb die in der Betriebsanleitung beschriebenen Aufbaurichtlinien einhalten.
- 2. zusätzlich die folgenden Regeln zum Einbau des Gerätes und zum Arbeiten an Schaltschränken beachten.

1.4 Einbau des Gerätes

Baugruppen müssen in elektrischen Betriebsmittelräumen oder in geschlossen Gehäusen (z.B. Schaltkästen aus Metall oder Kunststoff) installiert werden. Ferner müssen Sie das Gerät und den Schaltkasten (Metallkasten), oder zumindest die Hutschiene (Kunststoffkasten), auf die die Baugruppe aufgeschnappt wurde, erden.

1.5 Arbeiten an Schaltschränken

Zum Schutz der Baugruppen vor Entladung von statischer Elektrizität muss sich das Personal vor dem Öffnen von Schaltschränken bzw. Schaltkästen elektrostatisch entladen.

2 Hinweise für den Hersteller von Maschinen

2.1 Einleitung

Die Baugruppe UNIGATE[®] stellt keine Maschine im Sinne der EU-Richtlinie "Maschinen" dar. Für die Baugruppe gibt es deshalb keine Konformitätserklärung bezüglich der EU-Richtlinie Maschinen.

2.2 EU-Richtlinie Maschinen

Die EU-Richtlinie Maschinen regelt die Anforderungen an eine Maschine. Unter einer Maschine wird hier eine Gesamtheit von verbundenen Teilen oder Vorrichtungen verstanden (siehe auch EN 292-1, Absatz 3.1)

Die Baugruppe ist ein Teil der elektrischen Ausrüstung einer Maschine und muss deshalb vom Maschinenhersteller in das Verfahren zur Konformitätserklärung einbezogen werden.

3 Einführung

Die Baugruppe UNIGATE[®] CL-MPI dient als Anpassung einer seriellen Schnittstelle an den Siemens MPI-Bus. Es fungiert in diesem Anwendungsfall als Gateway und arbeitet als MPI Master oder Slave, wahlweise über Script einstellbar. Es kann mit jedem MPI-Gerät kommunizieren (z. B. S7-300).

Die Baugruppe CL-MPI besteht im wesentlichen aus folgenden Hardware-Komponenten:

- Potentialgetrennte RS485-Schnittstelle zum MPI-Bus
- ASIC "MPI 12x"
- Mikroprozessor 89C51RD2
- RAM und EPROM
- Optional potentialgetrennt
- Serielle Schnittstelle (RS232, RS485 und RS422) zum extern angeschlossenen Gerät

3.1 UNIGATE[®] CL Software Flussdiagramm

3.2 UNIGATE[®] Blockdiagramm

Das nachfolgende Bild zeigt ein typisches UNIGATE® Modul-Design.

3.3 UNIGATE® Applikationsdiagramm

Das nachfolgende Bild zeigt ein typisches Anschaltschema.

4 Die Betriebsmodi des Gateway

4.1 Konfigurationsmodus (config mode)

Der Konfigurationsmodus dient der Konfiguration des Gateways. In diesem Modus sind folgende Einstellungen möglich:

- Script einspielen
- Firmware updaten
- Konfiguration des Gateways

Das Gateway wird in diesem Modus starten wenn die Schalter S4 und S5 beim Start des Gateways beide die Stellung "F" haben. Das Gateway sendet unmittelbar nach dem Einschalten im Konfigurationsmodus seine Einschaltmeldung, die analog zu folgender Meldung aussieht: "RS-MPI-SC (232/422/485) V2.0 [28] (c)dA Switch=0x00FF Script(8k)="Leer"

Author="Deutschmann Automation GmbH" Version="1.0" Date=21.08.2001 SN=47110001". Im Konfigurationsmodus arbeitet das Gateway immer mit den Einstellungen 9600 Baud, kein Paritätsbit, 8 Datenbits und 1 Stopbit, die RS-State LED wird immer rot blinken, die "Error No/ Select ID" LEDs sind für den Benutzter ohne Bedeutung. Der Konfigurationsmodus ist in allen Software Revisionen enthalten.

4.2 Testmodus (test mode)

Einstellung des Testmodes

Der Testmode wird eingestellt, indem die Schalter S4 und S5 beide in die Stellung "E" gebracht werden. Alle anderen Schalter werden für die Einstellung des Testmodus nicht berücksichtigt. Mit diesen Einstellungen muss das Gateway neu gestartet werden (durch kurzzeitiges Trennen von der Spannungsversorgung).

Im Testmodus arbeitet das Gateway immer mit den Einstellungen 9600 Baud, kein Paritätsbit, 8 Datenbits und 1 Stopbit.

Er kann hilfreich sein, um das Gateway in die jeweilige Umgebung zu integrieren, z. B. um die Parameter der RS-Schnittstellen zu testen.

Im Testmode sind auf der Feldbusseite folgende default Einstellungen gültig:

MPI Partner Adr = 2 MPI Write Type = 0x44; // DB MPI Write Type-No = 1; // DB 1 MPI Write Adresse = 0; // DW 0 MPI Read Type = 0x44; // DB MPI Read Type-No = 1; // DB 1 MPI Read Adresse = 0; // DW 0

Funktionsweise des Testmodus

Nach dem Neustart im Testmodus wird das Gateway auf der seriellen Seite im Rhythmus von 1 Sekunde die Werte 0-15 in hexadezimaler Schreibweise ("0".."F") in ASCII-Kodierung senden. Gleichzeitig werden auf der Feldbus-Schnittstelle die gleichen Werte binär ausgegeben. Die State-LED auf der RS-Seite wird in diesem Modus rot blinken, die "Error No/Select ID" LEDs werden den Wert, der z. Zt. ausgegeben wird, binär darstellen. Zusätzlich wird jedes Zeichen, das auf einer der Schnittstellen empfangen wird auf derselben Schnittstelle, als ein lokales Echo wieder ausgegeben. Auf der Feldbusseite wird nur das erste Byte für das lokale Echo benutzt, d. h. sowohl beim Empfang als auch beim Senden wird nur auf das erste Byte der Busdaten

geschaut, die anderen Busdaten verändern sich gegenüber den letzten Daten nicht.

4.3 Datenaustauschmodus (data exchange mode)

Das Gateway muss sich im Datenaustauschmodus befinden, damit ein Datenaustausch zwischen der RS-Seite des Gateways und dem Feldbus möglich ist. Dieser Modus ist immer dann aktiv, wenn das Gateway sich nicht im Konfigurations- oder Test- bzw. Debugmodus befindet. Im Datenaustauschmodus wird das Gateway das eingespielte Script ausführen.

16.7.21

5 RS-Schnittstelle

5.1 RS-Schnittstellen beim UNIGATE® CL

Das UNIGATE[®] CL - MPI verfügt über die Schnittstellen RS232, RS422 und RS485. Die Hardware hat auch immer eine DEBUG-Schnittstelle (siehe Kapitel 7).

5.2 Puffergrößen beim UNIGATE[®] CL

Dem UNIGATE[®] CL steht auf der seriellen Seite ein Puffer von jeweils 1024 Byte für Eingangsund Ausgangsdaten zur Verfügung.

Der FIFO der Applikationsschnittstelle (RS-Schnittstelle) kann in jedem script-fähigen UNIGATE[®] ab Scriptrevision 26 geändert werden. Siehe dazu im Protocol Developer unter "Device Control" - "Hardware".

5.3 Framing Check

Über die Funktion "Framing Check" wird die Länge des Stopbits, das das Gateway empfängt überprüft. Hierbei ist das vom Gateway erzeugte Stopbit immer lang genug, damit angeschlossene Teilnehmer das Stopbit auswerten können.

Zu beachten ist, dass die Funktion "Framing Check" nur bei 8 Datenbits und der Einstellung "No parity" wirksam wird.

Weist das Stopbit bei aktivierter Prüfung die Länge 1 Bit nicht auf, wird ein Fehler erkannt und durch die Error LEDs angezeigt.

Die mögliche Einstellung für diesen Parameter kann vom Script gesteuert werden (siehe dazu die Online-Hilfe vom Protocol Developer). Die Voreinstellung für den "Stop Bit Framing Check" ist "enabled".

6 SSI-Schnittstelle

Das UNIGATE[®] unterstützt auch den Anschluss von Applikationen bzw. Produkten, die über SSI kommunizieren.

6.1 Inbetriebnahme der SSI-Schnittstelle

Die Konfiguration der SSI-Schnittstelle erfolgt im Konfigurationsmodus mit der Software WING-ATE, Protokoll SSI. Über die Parameter "Resolution" (1 bit ... 15 bit, 24 bit ... 25 bit), "SSI Encoder Type" (Binary oder Graycode) und "Clock stretch" muss der Gebertyp und die Abtastfrequenz definiert werden.

6.2 Parameter

6.2.1 Resolution

Der Bereich erstreckt sich von 1 Bit bis 25 Bit. Damit können Single-Turn SSI-Geber und Multi-Turn SSI-Geber konfiguriert werden.

6.2.2 SSI Encoder Type

Dieser kann zwischen Binär und Gray-Code gewählt werden.

6.2.3 Parameter Abtastfrequenz (Clock stretch)

Man kann die Abtastfrequenz verändern. Dazu wird ein "Stretch-Wert" übergeben, der eine Wartezeit nach jeder Clockflanke einfügt.

Wird eine 0 übergeben, gibt es keine Wartezeit.

Somit ergeben sich nun folgende SSI-Abtastfrequenzen, die geringfügig schwanken können:

Wartezeit = 0	→ SSI-Clock ~ 333kHz (No Stretch)
Wartezeit = 1	→ SSI-Clock ~ 185kHz
Wartezeit = 2	\rightarrow SSI-Clock ~ 150kHz
Wartezeit = 3	\rightarrow SSI-Clock ~ 125kHz
Wartezeit = 4	\rightarrow SSI-Clock ~ 110kHz
Wartezeit = 5	\rightarrow SSI-Clock ~ 100kHz
Wartezeit = 6	\rightarrow SSI-Clock ~ 88kHz
Wartezeit = 7	\rightarrow SSI-Clock ~ 80kHz
Wartezeit = 8	\rightarrow SSI-Clock ~ 72kHz
Wartezeit = 9	\rightarrow SSI-Clock ~ 67kHz
Wartezeit = A	\rightarrow SSI-Clock ~ 62kHz
Wartezeit = B	\rightarrow SSI-Clock ~ 58kHz
Wartezeit = C	\rightarrow SSI-Clock ~ 54kHz
Wartezeit = D	\rightarrow SSI-Clock ~ 50kHz
Wartezeit = E	\rightarrow SSI-Clock ~ 48kHz
Wartezeit = F	\rightarrow SSI-Clock ~ 45kHz

Die Bitzeit, aus der diese Frequenzen abgeleitet wurden, errechnet sich folgendermaßen: t = 3μ s + (2 * (0,6 μ s + (n * 0,6 μ s))), wobei n dem "Stretch-Wert" (1..F) entspricht. Ohne Clock-Verlängerung (n=0) bleibt es bei 3μ s \rightarrow 333kHz! Bei der max. Bitlänge von 32 Bit und dem langsamsten Clock ergibt sich somit ein Gesamteinlesezeit von 32 * 22 μ s =~ 700 μ s.

6.2.4 Parameter Geberüberwachung (Check Encoder)

Mit dem Parameter "Check Encoder" kann eine Geberüberwachung aktiviert werden, sofern der verwendete SSI-Geber diese Funktion unterstützt. Es wird überprüft, ob nach dem letzten gelesenen Geberbit die Datenleitung noch für mindestens ein Bit auf Low gezogen bleibt. Erkennt das UNIGATE[®] dieses Bit NICHT auf Low, wird ein Error 12 ausgegeben. Das erkennt z.B. einen Kabelbruch oder einen nicht angeschlossenen Geber. Es kann aber auch eine falsch konfigurierte Bitlänge, oder ein zu langsamer Auslesetakt sein.

6.3 Hardware- Beschaltung

Die Taktleitungen der SSI-Schnittstelle werden auf die Tx-Leitungen der RS422-Schnittstelle gelegt, die Datenleitungen auf die Rx-Leitungen am UNIGATE[®] CL.

Pin Nr.	Name	Funktion bei SSI
1	Rx 232	n. c.
2	Tx 232	n. c.
3	AP-GND	n. c.
4	Rx 422+	SSI DAT+
5	Rx 422-	SSI DAT-
6	Tx 422+	SSI CLK+
7	Tx 422-	SSI CLK-

X1 (3pol. + 4pol. Schraub-Steckverbinder):

7 Die Debug Schnittstelle

7.1 Übersicht über die Debug Schnittstelle

Das UNIGATE[®] bietet eine Debug Schnittstelle, die es ermöglicht, ein Script schrittweise auszuführen. Diese Schnittstelle ist im Normalfall nur für die Entwicklung eines Scripts nötig.

7.2 Start im Debugmode

Mit dem Anlegen von Spannung an das UNIGATE[®] (Power up) wird die Firmware nach Ausführung eines Selbsttests auf dieser Schnittstelle das binäre Zeichen 0 (0x00) ausgeben. Wenn das UNIGATE[®] innerhalb von 500 ms eine Quittung über diese Schnittstelle erhält, befindet es sich im Debugmode. Die Quittung ist das ASCII-Zeichen O (0x4F).

Mit dem Start im Debugmode wird die weitere Ausführung von Scriptbefehlen unterbunden.

7.3 Kommunikationsparameter für die Debugschnittstelle

Die Debugschnittstelle arbeitet immer mit 9600 Baud, no Parity, 8 Datenbit, 1 Stopbit. Eine Änderung dieser Parameter ist im Protocol Developer nicht möglich. Bitte achten Sie darauf, dass diese Einstellungen mit denen der PC-COM-Schnittstelle übereinstimmen und dort die Flusssteuerung (Protokoll) auf "keine" steht.

7.4 Möglichkeiten mit der Debug Schnittstelle

Normalerweise wird an der Debug Schnittstelle der Protocol Developer angeschlossen. Mit ihm ist es möglich ein Script schrittweise auszuführen, Sprünge und Entscheidungen zu beobachten sowie Speicherbereiche anzusehen. Außerdem können Haltepunkte gesetzt werden, er besitzt also im Prinzip alle Eigenschaften die ein Software-Entwicklungswerkzeug typischerweise besitzt. Es ist jedoch auch möglich über diese Schnittstelle ein Script Update durchzuführen. Ab der Scriptversion [27] kann man mit dem Scriptbefehl "SerialOutputToDebugInterface" auch Daten ausgeben. Bitte beachten Sie dazu den Hinweis im Handbuch 'Protocol Developer'.

7.5 Befehle der Debug Schnittstelle

Die Befehle zum Benutzen der Debug Schnittstelle sind dem Handbuch Protocol Developer zu entnehmen.

8 Funktionsweise des Systems

8.1 Allgemeine Erläuterung

Nach dem ISO/OSI-Modell kann eine Kommunikation in sieben Schichten, Layer 1 bis Layer 7, aufgeteilt werden.

Die Gateways der DEUTSCHMANN AUTOMATION setzen die Layer 1 und 2 vom kundenspezifischen Bussystem (RS485 / RS232 / RS422) auf das entsprechende Feldbussystem um. Layer 3 bis 6 sind leer, der Layer 7 wird gemäß Kapitel 8.3 umgesetzt.

8.2 Schnittstellen

Das Gateway ist mit den Schnittstellen RS232, RS422 und RS485 ausgerüstet.

8.3 Datenaustausch

Alle Daten werden vom Gateway in Abhängigkeit des eingespielten Scripts übertragen.

8.4 Mögliche Datenlängen

In der folgenden Tabelle sind die maximal zu übertragenden Feldbusdaten tabellarisch dargestellt:

Lesen	255 Byte	Maximale Datenlänge
Schreiben	255 Byte	Maximale Datenlänge

Unterstützt wird:

Lese- und Schreibzugriffe auf DB, Merker, Ein- und Ausgänge sowie passive Zugriffe auf Merker und DB.

8.5 Hochlaufphase

In der Hochlaufphase parametriert und konfiguriert sich das Gateway mit der Partnerstation am Bus. Erst nach fehlerfreiem Abschluss der Hochlaufphase kommt es zum Datenaustausch mit dem externen Gerät.

8.6 MPI-Script

Ein Scriptbeispiel ist mit der PC-Software Protocol Developer verfügbar.

9 Erstellung eines Scripts

9.1 Was ist ein Script

Ein Script ist eine Anreihung von Befehlen, die in exakt dieser Reihenfolge ausgeführt werden. Dadurch, dass auch Mechanismen gegeben sind, die den Programmfluss im Script kontrollieren, kann man auch komplexere Abläufe aus diesen einfachen Befehlen zusammenbauen.

Das Script ist speicherorientiert. Das bedeutet, dass alle Variablen sich immer auf einen Speicherbereich beziehen. Allerdings brauchen Sie sich beim Entwickeln eines Scripts nicht um die Verwaltung des Speichers zu kümmern; das übernimmt der Protocol Developer für Sie.

9.2 Speichereffizienz der Programme

Ein Scriptbefehl kann z. B. eine komplexe Checksumme wie eine CRC-16 Berechnung über Daten ausführen. Für die Codierung dieses Befehls sind als Speicherbedarf (für den Befehl selbst) lediglich 9 Byte nötig. Dies ist nur möglich, indem diese komplexen Befehle in einer Bibliothek enthalten sind.

Ein weiterer Vorteil dieser Bibliothek ist, dass die zu Grunde liegenden Funktionen bereits seit Jahren im praktischen Einsatz sind und deswegen als fehlerarm bezeichnet werden können. Da diese Befehle auch im für den Controller nativen Code vorhanden sind, ist auch das Laufzeitverhalten des Scripts an dieser Stelle günstig.

9.3 Was kann man mit einem Script Gerät machen

Unsere Script Geräte sind in der Lage, eine Menge von Befehlen abzuarbeiten. Ein Befehl ist dabei immer eine kleine fest umrissenen Aufgabe. Alle Befehle lassen sich in Klassen oder Gruppen einsortieren. Eine Gruppe von Befehlen beschäftigt sich mit der Kommunikation im allgemeinen, die Befehle dieser Gruppe befähigen das Gateway, Daten sowohl auf der seriellen Seite als auch auf der Busseite zu senden und zu empfangen.

9.4 Unabhängigkeit von Bussen

Prinzipiell sind die Scripte nicht vom Bus abhängig, auf dem sie arbeiten sollen, d. h. ein Script, das auf einem PROFIBUS Gateway entwickelt wurde, wird ohne Änderung auch auf einem Interbus Gateway laufen, da sich diese Busse von der Arbeitsweise sehr stark ähneln. Um dieses Script auch auf einem Ethernet Gateway abzuarbeiten, muss man evtl. noch weitere Einstellungen im Script treffen, damit das Script sinnvoll ausgeführt werden kann.

Es gibt keine festen Regeln, welche Scripte wie richtig arbeiten. Beim Schreiben eines Scripts sollten Sie beachten, auf welcher Zielhardware Sie das Script ausführen wollen, um die nötigen Einstellungen für die jeweiligen Busse zu treffen.

9.5 Weitere Einstellungen am Gateway

Die meisten Geräte benötigen keine weiteren Einstellungen außer denen, die im Script selbst getroffen sind. Allerdings gibt es auch Ausnahmen hierzu. Diese Einstellungen werden mit der Software WINGATE getroffen. Wenn Sie bereits unsere Serie UNIGATE[®] kennen, wird Ihnen die Vorgehensweise hierbei bereits bekannt sein. Beispielhaft sei hier die Einstellung der IP-Adresse und der Net-Mask eines Ethernet-Gateways genannt. Diese Werte müssen fix bekannt sein und sind auch zur Laufzeit nicht vorhanden. Ein weiterer Grund für die Konfiguration dieser Werte in WINGATE ist folgender: Nach einem Update des Scripts bleiben diese Werte unangetastet, d. h. die einmal getroffenen Einstellungen sind auch nach einer Änderung des Scripts weiterhin vorhanden.

Nur so ist es auch möglich, dass das gleiche Script auf verschiedenen Ethernet-Gateways arbeitet, die alle eine unterschiedliche IP-Adresse haben.

9.6 Die Benutzung des Protocol Developer

Das Softwaretool Protocol Developer kann von unserer Internetseite www.deutschmann.de heruntergeladen werden.

Es ist als Werkzeug zum einfachen Erstellen eines Scripts für unsere Script Gateways gedacht; seine Bedienung ist genau darauf ausgerichtet. Nach dem Start des Programms wird das zuletzt geladene Script erneut geladen, sofern es nicht der erste Start ist.

Windows typisch können Script Befehle per Maus oder Tastatur hinzugefügt werden. Soweit für den entsprechenden Befehl definiert und notwendig wird der Dialog zu dem entsprechenden Befehl angezeigt, und nach dem Eingeben der Werte wird automatisch der richtige Text in das Script eingefügt. Das Einfügen von neuen Befehlen durch den Protocol Developer erfolgt so, dass niemals ein existierender Befehl überschrieben wird. Generell wird ein neuer Befehl vor dem eingefügt, auf dem momentan der Cursor positioniert ist. Selbstverständlich können die Befehle auch einfach per Tastatur geschrieben werden, oder bereits geschriebene Befehle bearbeitet werden.

9.7 Genauigkeiten der Baudraten

Die Baudrate der seriellen Schnittstelle wird aus der Quarzfrequenz des Prozessors abgeleitet. Zwischenzeitlich arbeiten alle Script-Gateways mit einer Quarzfrequenz von 40 MHz. Im Script lässt sich jede beliebige ganzzahlige Baudrate eingeben. Die Firmware stellt daraufhin die Baudrate ein, die am genauesten aus der Quarzfrequenz abgeleitet werden kann. Die Baudrate, mit der das Gateway tatsächlich arbeitet (BaudIst) kann folgendermaßen ermittelt werden:

Baudlst = (F32 / K) F32 = Quarzfrequenz [Hz] / 32 K = Round (F32 / BaudSoll); bei Round () handelt es sich um eine kaufmännische Rundung

Beispiel:

Es soll die genaue Ist-Baudrate berechnet werden, wenn 9600 Baud vorgegeben werden, wobei das Gateway mit 40 MHz betrieben wird:

F32 = 40000000 / 32 = 1250000 K = Round(1250000 / 9600) = Round(130.208) = 130 BaudIst = 1250000 / 130 = 9615.38

D. h.: Die Baudrate, die das Gateway tatsächlich einstellt beträgt 9615.38 Baud

Der entstandene Fehler in Prozent lässt sich folgendermaßen berechnen:

Fehler[%] = (abs(BaudIst - BaudSoll) / BaudSoll) * 100

In unserem Beispiel ergibt sich somit ein Fehler von: Fehler = (abs(9615.38 - 9600 / 9600) * 100 = 0.16%

Fehler, die unter 2% liegen können in der Praxis toleriert werden!

Nachfolgend finden Sie eine Auflistung von Baudraten bei 40 MHz-Quarzfrequenz mit den dazugehörigen Fehlern:

4800 Baud: 0.16% 9600 Baud: 0,16% 19200 Baud: 0,16% 38400 Baud: 1.35% 57600 Baud: 1,35% 62500 Baud: 0% 115200 Baud: 1,35% 312500 Baud: 0% 625000 Baud: 0%

9.8 Scriptabarbeitungszeiten

Das Script wird vom Protocol Developer übersetzt, und der dabei erzeugte Code in das Gateway geladen. Der Prozessor im Gateway interpretiert nun diesen Code. Dabei gibt es Befehle, die sehr schnell abgearbeitet werden können (z. B. "Set Parameter"). Es gibt aber auch Befehle, die länger dauern (z. B. das Kopieren von 1000 Bytes). Somit differiert die Abarbeitungszeit zunächst einmal durch die Art des Scriptbefehls. Wesentlich stärker wird die Abarbeitungszeit der Scriptbefehle aber bestimmt durch die Prozessorzeit, die für diesen Prozess zur Verfügung steht. Da der Prozessor mehrere Aufgaben gleichzeitig ausführen muss (Multitasking-Sytstem), steht nur ein Teil der Prozessorleistung für die Scriptabarbeitung zur Verfügung. Folgende Tasks - in der Reihenfolge der Priorität - werden auf dem Prozessor ausgeführt:

- Senden und Empfangen von Daten an der Debug-Schnittstelle (nur wenn Protocol Developer auf PC gestartet ist)
- Senden und Empfangen von Daten an der RS-Schnittstelle
- Senden und Empfangen von Daten an der Feldbus-Schnittstelle
- Durch Systemtakt (1ms) gesteuerte Aufgaben (z. B. Blinken einer LED)
- Abarbeitung des Scriptes

Aus der Praxis heraus kann man ganz grob mit 0,5 ms pro Scriptzeile rechnen. Dieser Wert hat sich über viele Projekte hinweg immer wieder als Richtwert bestätigt. Er stimmt immer dann recht gut, wenn der Prozessor noch genügend Zeit für die Scriptabarbeitung zur Verfügung hat. An Hand der oben aufgelisteten Tasks kann man folgende Empfehlungen formulieren, um eine möglichst schnelle Scriptabarbeitung zu bekommen:

- Debugschnittstelle deaktivieren (ist im Serieneinsatz der Normalfall)
- Datenlast auf der RS-Schnittstelle möglichst klein halten. Dabei ist nicht die Baudrate das Problem, sondern die Anzahl Zeichen, die pro Sekunde übertragen werden.
- Datenlast auch auf der Feldbusseite nicht unnötig gross machen. Insbesondere bei azyclischen Busdaten, diese möglichst nur bei Änderung schicken. Die Datenlänge bei Bussen die auf eine feste Länge konfiguriert werden (z.B. PROFIBUS) nur so gross wählen, wie unbedingt notwendig.

Sollte trotz dieser Massnahmen die Abarbeitungszeit zu gross sein, besteht die Möglichkeit, einen kundenspezifischen Scriptbefehl zu generieren, der dann mehrere Aufgaben in einem Scriptbefehl abarbeitet. Wenden Sie sich dazu bitte an unsere Support-Abteilung.

10 Implementierte Protokolle im UNIGATE[®] CL mit Universalscript

Das UNIGATE[®] CL wird mit dem Script "Universalscript Deutschmann" ausgeliefert. Die Konfiguration der Protokolle erfolgt mit der Software WINGATE. Siehe dazu die "Anleitung UNIGATE[®] CL - Konfiguration mit WINGATE". Sie finden das PDF auch auf unserer Homepage unter Support/Downloads/Handbücher.

Achtung: Wird ein Reset Device durchgeführt, geht möglicherweise (je nach Firmware-Version des UNIGATE[®]) das "Universalscript" verloren und muss neu eingespielt werden. Sollte Ihnen das kompilierte Script nicht mehr vorliegen, muss eine entsprechende Anfrage an den Deutschmann Support gestellt werden. https://www.deutschmann.de/de/support/anfrage/

10.1 Protokoll: Transparent

Die Daten werden bidirektional vom UNIGATE® übertragen.

10.1.1 Datenaufbau

Auf der RS-Eingangsseite ist eine Timeoutzeit von 2 ms fest eingestellt. Werden innerhalb der Timeoutzeit keine weiteren Daten empfangen, werden die bis dahin empfangenen Daten auf den Bus übertragen.

Werden weniger Daten über Rx empfangen, als über die GSD-Datei konfiguriert (I/O-Länge), dann wird der Rest mit NULL aufgefüllt.

Zuviel empfangene Daten werden abgeschnitten.

Die benötigte Länge der Eingangs- und Ausgangs-Daten (I/O-Länge) können, je nach Feldbus, über die Gerätekonfiguration des UNIGATEs oder über die Gerätebeschreibungsdatei in der übergeordneten Steuerung eingestellt werden.

10.2 Protokoll: Universal 232

Die Protokollbezeichnung "Universal 232" und auch der Bezug auf die "RS232-Schnittstelle" in der Beschreibung sind historisch gewachsen. Das Protokoll funktioniert aber auch genauso mit RS422 und RS485!

10.2.1 Datenaufbau

10.2.2 Parameter Feldbus

Triggerbyte: Siehe "Das Triggerbyte" Kapitel 10.7. Längenbyte: Siehe "Das Längenbyte" Kapitel 10.8.

10.2.3 Parametertabelle RS232

10.2.3.1 Startzeichen (232 Start character)

Ist dieses Zeichen definiert, wertet das Gateway nur die Daten an der RS232-Schnittstelle aus, die nach diesem Startzeichen folgen. Jede Sendung vom Gateway über die RS232-Schnittstelle wird in diesem Fall mit dem Startzeichen eingeleitet.

10.2.3.2 Länge232 (232 Length)

Ist dieses Byte aktiviert, erwartet das Gateway empfangsseitig soviele Bytes Nutzdaten, wie in diesem Byte von dem RS232-Sendegerät angegeben werden. Sendeseitig setzt das Gateway dieses Byte dann auf die Anzahl der von ihm übertragenen Nutzdaten. Ist das Byte "Länge232" nicht definiert, wartet das Gateway beim Empfang auf der RS232-Schnittstelle auf das Endekriterium, wenn dieses definiert ist. Ist auch kein Endekriterium definiert, werden so viele Zeichen über die RS232-Schnittstelle eingelesen, wie im Feldbus-Sendepuffer bertragen werden können. Als Sonderfall kann für diesen Parameter auch ein Längenbyte mit zusätzlicher Timeoutüberwachung in WINGATE eingestellt werden. In diesem Fall werden die empfangenen Zeichen bei einem Timeout verworfen.

Achtung: Ist als Endezeichen "Timeout" gewählt, ist dieses Byte ohne Bedeutung.

10.2.3.3 Timeout

Wird das Endezeichen auf "FF" gesetzt, wird der Wert, der im Parameter RX_Timeout eingestellt wurde, aktiviert und die dort eingetragene Zeit beim seriellen Empfang abgewartet, bzw. getriggert bei neu einkommenden Zeichen. Ist die eingestellte Zeit ohne Ereignis überschritten, ist das Endekriterium erreicht und die Zeichen werden auf den Bus kopiert.

10.2.3.4 Datenbereich

In diesem Feld werden die Nutzdaten übertragen.

10.2.3.5 Endezeichen (232 End character)

Wenn dieses Zeichen definiert ist, empfängt das Gateway Daten von der RS232- Schnittstelle bis zu diesem Zeichen. Als Sonderfall kann hier das Kriterium "Timeout" definiert werden. Dann empfängt das Gateway solange Zeichen, bis eine definierte Pause auftritt. Im Sonderfall "Timeout" ist das "Länge 232-Byte" ohne Bedeutung. Sendeseitig fügt das Gateway als letztes Zeichen einer Sendung das Endezeichen an, wenn es definiert ist.

10.2.4 Kommunikationsablauf

Die Nutzdaten (Datenbereich) die über den Feldbus ankommen, werden gemäß Kapitel 10.2.1 transparent in das RS232-Datenfeld kopiert, und über die RS-Schnittstelle übertragen, wobei das Protokoll gem. der Konfiguration (Startzeichen, Endezeichen...) ergänzt wird. <u>Eine Quittung erfolgt NICHT!</u>

Ist das "Triggerbyte" (siehe Kapitel 10.7) aktiv, werden Daten nur bei einem Wechsel dieses Bytes gesendet. Ist das "LaengenByte" (siehe Kapitel 10.8) aktiv, werden nur soviele der nachfolgenden Bytes, wie dort spezifiziert sind, übertragen.

Empfangsdaten an der RS-Schnittstelle werden gem. dem konfigurierten Protokoll ausgewertet, und das Datenfeld (Datenbereich (siehe Kapitel 10.2.1)) an den Feldbusmaster gesendet. Sind mehr Zeichen empfangen worden, als Feldbusblocklänge, werden die hinteren Bytes abgeschnitten und ein Rx-Overrun angezeigt, sind weniger empfangen worden, wird mit 0 aufgefüllt. Ist das "LaengenByte" aktiv, wird dort die Anzahl der empf. Nutzdaten eingetragen. Ist das "Triggerbyte" aktiv, wird dieses nach jedem vollständigem Empfang an der RS-Schnittstelle um eins erhöht.

10.3 Protokoll "Universal Modbus RTU Slave"

Das UNIGATE[®] ist auf der Applikationsseite Modbus-Slave. Die Slave ID wird an den Drehschaltern S4 + S5 eingestellt (S4 = High, S5 = Low)

10.3.1 Datenaufbau Feldbusseite z.B.: PROFIBUS

Gilt für In und Out

- 1. Byte: Trigger-Byte, optional (siehe Kapitel 10.7, Das Triggerbyte)
- 2. Byte: Feldbuslängen-Byte, optional (siehe Kapitel 10.8, Das Längenbyte)
- 3. Byte: Prozessdaten
- 4. Byte: Prozessdaten

Datenaufbau

. . . .

	(optional)	(optional)			
Feldbus	Trigger	LängeBus	Prozessdaten		
ţ.					
RS	Adresse	Funktion	Datenbereich	CRC-high	CRC-low

10.3.1.1 Beispiel: FC1 + FC2

Ein Modbus Master (externes Gerät) sendet einen Request (Anfrage) mit Funktionscode 1 oder 2.

Hinweis:

Modbus Master Request Adresse (High + Low) Adressabfrage 01 .. 08 wird immer auf Adresse 01 sein. Adressabfrage 09 .. 16 wird immer auf Adresse 09 sein. Adressabfrage 17 .. 24 wird immer auf Adresse 17 sein.

Konfiguration:

FIELDBUS	
Fieldbus ID	126
Data exchange	On Change
Fieldbus lengthbyte	active
APPLICATION	
Protocol	Universal Modbus RTU Slave

Feldbus sendet zum UNIGATE[®]

08 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A... **Hinweis:** Das 1. Byte (0x08) ist das Feldbuslängenbyte. Es werden also nur die folgenden 8 Byte im UNIGATE[®] gespeichert.

Angeschlossener Modbus Master sendet Request an die RS232/484 Seite des UNIGATE[®]: Start-Adresse 0001, Lenght 56 (38h), FC1 (-Read Coil Status) [01] [01] [00] [00] [00] [38] [3d] [d8]

UNIGATE[®] sendet über RS232/485 Response: [01] [01] [07] [01] [02] [03] [04] [05] [06] [07] [6b] [c5]

Darstellung der Daten im Modbus Master (FC1):

00001: <1>	00009: <0>	00017: <1>	00025: <0>	00033: <1>	00041: <0>	00049: <1>
00002: <0>	00010: <1>	00018: <1>	00026: <0>	00034: <0>	00042: <1>	00050: <1>
00003: <0>	00011: <0>	00019: <0>	00027: <1>	00035: <1>	00043: <1>	00051: <1>
00004: <0>	00012: <0>	00020: <0>	00028: <0>	00036: <0>	00044: <0>	00052: <0>
00005: <0>	00013: <0>	00021: <0>	00029: <0>	00037: <0>	00045: <0>	00053: <0>
00006: <0>	00014: <0>	00022: <0>	00030: <0>	00038: <0>	00046: <0>	00054: <0>
00007: <0>	00015: <0>	00023: <0>	00031: <0>	00039: <0>	00047: <0>	00055: <0>
00008 · 205	00016 205	00024 - 205	00032 - 205	00040 - 205	00048 205	00056 205

Beispiel: StartAdress 0008, Length 80, FC2 (Read Input Status) [01] [02] [00] [07] [00] [50] [c9] [f7]

UNIGATE[®] sendet über RS232/485 Response: [01] [02] [0a] [02] [03] [04] [05] [06] [07] [08] [00] [00] [00] [8f] [7a]

10.3.1.2 Beispiel: FC3 (Read Holding Register) + FC4 (Read Input Register)

Feldbus sendet zum UNIGATE®

00 30 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 20 20 20...

(Konfiguration ist diesmal mit "Data exchange = On Trigger", also mit zusätzlichem 1. Steuerbyte in den Feldbusdaten).

"Fieldbus lenghtbyte = active", in diesem Beispiel 30h (48d), das UNIGATE[®] kopiert somit die folgenden 48 Byte vom Feldbus in den internen Speicher. Angeschlossener Modbus Master sendet Request an die RS232/484 Seite des UNIGATE[®] [01] [03] [00] [00] [00] [14] [45] [c5]

UNIGATE[®] sendet über RS232/485 Response:

[01] [03] [28] [02] [03] [04] [05] [06] [07] [08] [09] [0a] [0b] [0c] [0d] [0e] [0f] [10] [11] [12] [13] [14]... ... [15] [16] [17] [18] [19] [1a]

Darstellung der Prozessdaten im Modbus Master:

40001:	<0203H>
40002:	<0405H>
40003:	<0607H>
40004:	<0809H>
40005:	<oaobh></oaobh>
40006:	<ocodh></ocodh>
40007:	<oeofh></oeofh>
40008:	<1011H>
40009:	<1213H>
40010:	<1415H>
40011:	<1617H>
40012:	<1819H>
40013:	<1A20H>
40014:	<2020H>
40015:	<2020H>
40016:	<0000H>
40017:	<0000H>
40018:	<0000H>
40019:	<0000H>
40020:	<0000H>

Funktionsweise FC3 und FC4 im Protokoll "Universal Modbus (RTU/ASCII) Slave":

Ab "Universalscript Deutschmann" V1.5.1:

- FC3 (0x03): Read Holding Registers greifen auf den Puffer Data To SPS zu.
- FC4 (0x04): Read Input Registers greift auf den Puffer Data From SPS zu.

10.3.1.3 Beispiel: Schreibe Single Coil FC5

Feldbus Master hat z.B. einmal folgende Daten an das UNIGATE[®] gesendet: 07 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 20 20 20...

1. Byte = Feldbuslängenbyte

Es werden die folgenden 7 Byte im UNIGATE[®] gespeichert, der Rest wird nicht überschrieben. Ein Modbus Master liest mit FC 1 und der Coil-Länge = 80 (10 Byte), folgende Werte aus:

00001.		00017.		00000		00040.		000/5	
00001:	<1>	00017:	<ī>	00033:	<1>	00049:	<1>	00065:	< U >
00002:	<0>	00018:	<1>	00034:	<0>	00050:	<1>	00066:	$\langle 0 \rangle$
00003:	<0>	00019:	<0>	00035:	<1>	00051:	<1>	00067:	< 0 >
00004:	<0>	00020:	<0>	00036:	<0>	00052:	<0>	00068:	< 0 >
00005:	<0>	00021:	< 0 >	00037:	<0>	00053:	<0>	00069:	< 0 >
00006:	<0>	00022:	<0>	00038:	<0>	00054:	<0>	00070:	< 0 >
00007:	<0>	00023:	< 0 >	00039:	<0>	00055:	<0>	00071:	< 0 >
00008:	<0>	00024:	< 0 >	00040:	<0>	00056:	<0>	00072:	< 0 >
00009:	<0>	00025:	< 0 >	00041:	<0>	00057:	<0>	00073:	< 0 >
00010:	<1>	00026:	<0>	00042:	<1>	00058:	<0>	00074:	< 0 >
00011:	<0>	00027:	<1>	00043:	<1>	00059:	<0>	00075:	< 0 >
00012:	<0>	00028:	<0>	00044:	<0>	00060:	<0>	00076:	< 0 >
00013:	<0>	00029:	<0>	00045:	<0>	00061:	<0>	00077:	< 0 >
00014:	<0>	00030:	<0>	00046:	<0>	00062:	<0>	00078:	< 0 >
00015:	< 0 >	00031:	< 0 >	00047:	<0>	00063:	<0>	00079:	< 0 >
00016:	< 0 >	00032:	<0>	00048:	< 0 >	00064:	< 0 >	00080:	< 0 >

Die Feldbusausgangsdaten werden erst aktualisiert wenn sie über einen Schreibbefehl von der RS Seite angetriggert werden. Dies geschieht z.B. über den FC 5 :

Write Coil	×
Node: 1 Address: 2	
Value © Off © On	
Update Cancel	

Das 1. Byte ist das Feldbuslängenbyte. Es enthält die Anzahl Nutzzeichen, danach folgen die Nutzdaten. Der Nutzdatenbereich (interner Buffer) ist maximal 1024 Byte groß.

Im folgenden Beispiel wird das Bit (Coil) in Adresse 0002 auf High (1) gesetzt:

Write Coil	×
Node: 1	
Address: 2	
Value C Off © Ori	
Update Cancel	

Die Feldbusdaten werden aktualisiert: 1F <u>03</u> 02 03 04 05 06 07 00 00 00 00 00

Der interne Buffer behält sich auch diesen Wert, daher kann er vom Master per FC1 Read Coil Status zurück gelesen werden:

00001: <1> 00002: <1> 00003: <0> 00004: <0> 00005: <0> 00006: <0> 00006: <0>

10.3.1.4 Beispiel: Write Single Register FC6

Modbus Master sendet in Adresse 0008 den Wert 1234H.

Writ	e Register	×
	Node: 1	
	Address: 8	
	Value, (HEX): 1234	
	Update Cancel	

Der Modbus Master sendet den Request an das UNIGATE[®]: [01] [06] [00] [07] [12] [34] [35] [7c]

Das UNIGATE[®] sendet einen Response: [01] [06] [00] [07] [12] [34] [35] [7c]

Die 2. Zeile zeigt die Feldbusdaten NACH dem Schreibbefehl.

In dem Modbus Request sieht man das als Adresse der Wert 00 07 gesendet wird. (Wie auch im Kapitel Universal Modbus Master erwähnt ziehen manche Master System eins als Offset ab.) Daraus ergibt sich der Byte-Offset für die Feldbusausgangsdaten => 14. Man fängt mit dem ersten Prozessdaten Wert mit Index NULL an zu zählen. 1F 03 02

+---- 1. Prozesswert

+----- Feldbuslängenbyte

10.3.1.5 Beispiel: Force multiple coils FC 15

Hinweis: Für die Adresse kann nur ein Vielfaches von 8 übergeben werden incl. Null. Also 0, 8, 16, … (Auch hier gilt es wieder den Offset von 1 zu beachten)

Beispiel: Startadresse = 0001. Geändert wurde Adr 0002 ... 0004 von Low auf High:

15: FORCE		LE COILS	×
		Address: 0001 Length: 0080	
	0001:	⊙Off ⊂ On 🕇	-
	0002:	🔿 Off 💿 On 👘	1
	0003:	🔿 Off 💿 On	
	0004:	O Off 💿 Or	
	0005:	💿 Off 🔿 On	
	0006:	🖲 Off 🔿 On	
	0007:	🖲 Off 🔿 On	
	0008:	⊙Off ⊂ On	1
	<u>U</u> pda	ate <u>C</u> ancel	-

Zeile eins zeigt die Feldbusdaten VOR dem Request:

Geändert hat sich somit der 1. Prozessdatenwert von 00h nach 0Eh.

10.3.1.6 Beispiel: Preset multiple register FC16

16: PRESE	T MULTIP	LE REGISTER	ទ		×
	A	ddress: 0001 Length: 0080			
	0001:	OEFF	(HEX)	From File	
	0002:	0304	(HEX)	To File	
	0003:	0506	(HEX)		
	0004:	07FF	(HEX)		
	0005:	1205	(HEX)		
	0006:	1206	(HEX)		
	0007:	0000	(HEX)		
	0008:	0000	(HEX)		
				<u> </u>	
	<u>U</u> pdati	: <u>C</u> a	ncel		

Geändert wurde nur der Inhalt von Registeradresse 0005 und 0006.

10.4 Protokoll "Universal Modbus RTU Master"

Das UNIGATE® ist auf der Applikationsseite Modbus-Master

10.4.1 Datenaufbau Feldbusseite (z.B. PROFIBUS):

Gilt für In und Out

- 1. Byte: Trigger-Byte , optional (siehe Kapitel 10.7, Das Triggerbyte)
- 2. Byte: Feldbuslängen-Byte, optional (siehe Kapitel 10.8, Das Längenbyte)
- 3. Prozessdaten

Datenaufbau

10.4.2 Datenaufbau Applikationsseite:

Nach Modbus RTU Master Definition.

Unterstützte Funktionen:

Read coil status FC1	(No. of Points = Bit)
Read input status FC2	(No. of Points = Bit)
Read multiple register FC3	(No. of Points = Word)
Read input registers FC4	(No. of Points = Word)
Force single coil FC5	(No. of Points – not used = fix 1 Bit)
Preset single register FC6	(No. of Points – not used = fix 1 Word)
Force multiple coils FC15	(No. of Points = Bit)
Preset multiple register FC16	(No. of Points = Word)

Hinweis:

status and coil = 1 Bit, register = 16 Bit.

FC 1 + 2 sowie FC 3 + 4 sind im Prinzip gleich, der einzige Unterschied ist die Definition der Startadresse.

Bei FC1 fängt sie bei Null an, bei FC2 bei 10 000. Bei FC3 fängt sie bei 40 000 an, bei FC4 bei 30 000

10.4.3 Konfiguration: über Wingate ab wcf Datei Version 396

Parameter Name	Wertebereich	Erklärung
Modbus Timeout (10ms)	1 255 (10ms 2550ms)	Maximale Wartezeit auf den "Response"
		bevor ein Error 9 für Timeout generiert wird.
		Ist "RX Poll Retry" > 0 wird erst nach den
		Wiederholversuchen ein Error generiert.
RX Poll Retry		Wiederholversuche des letzten, ungültig
		beantworteten, "Request"
RX Poll Delay (10ms)		Pause vor dem nächsten "Request"

Konfigurationsparameter für einen Modbus Request:

Req. 1 Slave ID: Slave ID des Modbusslaveteilnehmers

Req. 1 Modbus Function: s. "Unterstützte Funktionen"

Req. 1 StartAdr (hex): Startadresse (High / Low) der Modbusregister ab der gelesen/geschrieben werden soll.

Req. 1 No. of Points (dec): Anzahl der zu lesenden/schreibenden Register/Coils

Req. 1 Fieldbus Map Adr(Byte): Position des zu kopierenden Prozesswertes aus/zu dem Feldbusbereich, je nach Schreib/Lesebefehl. Ist der Wert NULL, werden die Prozessdaten automatisch hintereinander gereiht.

Es können bis zu 24 Request's konfiguriert werden.

Zusätzliche konfigurationsmöglichkeiten in der Einstellung "Req. ... Modbus Function":

jump to Req. 1: springe zum 1. Requesteintrag

disable this Req.: überspringe diesen Request und führe den nächsten Request-Eintrag aus.

"(10ms)": einstellbar in 10ms Schritten

"(hex)": Eingabe in hexadezimaler Schreibweise.

"(dec)": Eingabe in dezimaler Schreibweise.

[&]quot;(Byte)": Zählweise in Byte, angefangen bei Position Null. III Achtung: Bei Lesebefehle, z.B. FC3, ist nach dem Triggerund Längenbyte der erste Prozesswert die Position Null, die auf den Feldbus zur SPS kopiert wird. Bei Schreibbefehlen, z.B. FC16, ist die Position Null das Triggerbyte.

10.4.3.1 Beispiel: Read coil status FC1

Konfiguration

	-
Req. 3 Slave ID	1
Reg. 3 Modbus Function	Read coil status FC1
Req. 3 StartAdr (hex)	0004
Reg. 3 No. of Points (dec)	2
Reg. 3 Fieldbus Map Adr(Byte)	6

Dateninhalt Modbus Slave

Address:	0001	Device Id: 1 MODBUS Point Type	
	01	: COIL STATUS	-
Length:	24		
5			
00001: <0>	00009: <0>	00017: <0>	
00002: <0>	00010: <0>	00018: <0>	
00003: <0>	00011: <0>	00019: <0>	
00004: <0>	00012: <0>	00020: <0>	
00005: <1>	00013: <0>	00021: <0>	
00006: <0>	00014: <0>	00022: <0>	
00007: <0>	00015: <0>	00023: <0>	
00008: <0>	00016: <0>	00024: <0>	

- 1. Byte = Triggerbyte (Wert = 0x66)
- 2. Byte = Feldbuslängenbyte (Wert = 0x07)
- 3. Byte = Fieldbus Map Adr 0 (Wert = 0x00)
- 4. Byte = Fieldbus Map Adr 1 (Wert = 0x00)
- 5. Byte = Fieldbus Map Adr 2 (Wert = 0x00)
- 6. Byte = Fieldbus Map Adr 3 (Wert = 0x00)
- 7. Byte = Fieldbus Map Adr 4 (Wert = 0x00)
- 8. Byte = Fieldbus Map Adr 5 (Wert = 0x00)
- 9. Byte = Fieldbus Map Adr 6 (Wert = 0x01) siehe Konfiguration
- 10. Byte = Fieldbus Map Adr 7 (Wert = 0x00)
- 11. Byte ...

In folgendem Beispiel wird im Modbus Slave in Adresse 6 der Wert von 0 auf 1 geändert:

00001: <0>
00002: <0>
00003: <0>
00004: <0>
00005: <1>
00006: <1>
00007: <0>
00008: <0>

Hier sieht man die Änderung:9. Byte = Fieldbus Map Adr 6 (Wert = 0x01) => 0x03

Eine Änderung von Adresse 7 im Modbus Slave hat keine Auswirkung auf die Feldbusausgangsseite, weil in der Konfiguration "No. Of Points" = 2 eingestellt ist.

00001: <0> 00002: <0> 00003: <0> 00004: <0> 00005: <1> 00006: <1> 00007: <1> 00007: <1>

Der Wert bleibt unverändert auf 0x03: 1F 07 00 00 00 00 00 00 03 00 00 00 0

10.4.3.2 Beispiel: Read input status FC2

Im folgenden Beispiel der Inhalt von Adresse 10007 ... 10009 in das 8. Feldbusausgangsbyte gemapped (kopiert/übertragen).

Reg. 1 Slave ID	1
Reg. 1 Modbus Function	Read input status FC2
Reg. 1 StartAdr (hex)	0006
Reg. 1 No. of Points (dec)	3
Req. 1 Fieldbus Map Adr(Byte)	8

Address: Length:	0001 10	Device Id: 1 MODBUS Point Type 02: INPUT STATUS
10001: <0>		
10002: <0>		
10003: <0>		
10004: <0>		
10005: <0>		
10006: <0>		
10007. (1)		
10008-205		
10000. (0)		
10010. (0)		

76 09 00 00 00 00 00 00 00 00 01 00 00 00 00

tart bits	1 ,		Device Id: 1		
ata bits	8 /				
top bits	1 /	Address: 0001	MODBUS Point Type		Inputdata
arity	None		02: INPUT STATUS		data(hex)
audrate	19200	Length: 10			1F 09 00 00 00 00 00 00 00 00 05 00 00 00 00
32 Interface	232				20 09 00 00 00 00 00 00 00 00 05 00 00 00 00
Modbus Master Request					21 09 00 00 00 00 00 00 00 00 05 00 00 00 00
lodbus Timeout (10ms)	25				22 09 00 00 00 00 00 00 00 00 05 00 00 00 00
× Poll Retry	0	10001: <0>			
× Pol Delau (10ms)	0	10002: <0>			
(remoj	· / /	10003: <0>			
ag 1 Shup ID	1	10004: <0>			
eq. 1 Marker Evention	Dand input status ECO	10005: <0>			
eq. T Modbus Function	neau input status r.c.z	10006: <0>			
eq. 1 StartAdr (hex)	0006	10007: <1> LSB			
eq. 1 No. of Points (dec)	3	10008: <0>			1
eg. 1 Fieldbus Map Adr(Byte)	8	10009: <1>		1	
		10010: <0>		N	Monitor Data Diagnose DPV1 Async
	tart bits de bits op bits op bits softward 22 Interface Modbus Master Request oditus Timeout (10ms) X Pell Delay (10ms) X Pell Delay (10ms) ag 11 Safuer Jin ag 11 Modbus Function ag 11 Modbus Function ag 11 Not Pinst (dec) ag 11 Not Pinst (dec) ag 11 Not Pinst (dec)	tat bbs 1 da bbs 8 da bbs 8 stbp None stbp None stbp None stbp 19200 SQ Interface 232 odbust Matter Requet 232 odbust Matter Requet 25 SV Poll Rety 0 X Poll Dely 00% 0 Q 18460 0 eq. 1 Stark (Inves) 0 eq. 1 No of Points (dec) 3 eq. 1 Fortis (dec) 3 eq. 1 No of Points (dec) 8	Last bits 1 da bits 8 da bits 8 da bits 8 da bits 8 da bits 10001 strip None strip None strip None strip 19200 S2 Interface 232 ordbut Madre Request - 232 ordbut Madre Request - 230 V Poll Retay 0 10001: 0D 10003: 0D 10003: 0D 10003: 0D 10004: 0D 10003: 0D 0005 100065: 0D 0006 100065: 0D 00010: 0D 10008: 0D 0006 10008: 0D 0008: 0D 10008: 0D 00010: 0D 10008: 0D 00010: 0D 100011: 0D	Lant bits 1 Device Id: 1 da bits 0 Address: 0001 MODBUS Point Type stable 1 Address: 0001 02: INPUT STATUS stable 13200 Length: 10 02: INPUT STATUS States 232 10001:: 00 0001:: 00: States 0 0 10002:: 0 0 Yeol Reay 0 100032:: 0 100032:: 0 States ID 1 10005:: 00 10005:: 0 ag. 1Modu Function Read input status FC2 10005:: 10005:: 1 0.006:: 0006:: 10007:: LSB 0 0 ag. 1Modu Function Read input status FC2 10005:: 1 1 1 0.006:: 0 10007:: 1 LSB 0 0 0.007:: 10008:: 0 10009::< 1 0 0 0	Last bits 1 Device Id: 1 da bits 8 Address: 0001 MODBUS Point Type stby None None MODBUS Point Type 02: INPUT STATUS stby 13200 Length: 10 02: INPUT STATUS SQ Interace 232 10001: 00 10001: 00 VEX DI Delay 0 10002: 10001: 00 10002: 10001: 00 X Pol Delay 0 10003: 00 10003: 00 10003: 00 000

Im folgenden Beispiel ändert sich der Inhalt von Adresse 10009 von 0 -> 1

Im nächsten Beispiel wurde nur die "No. Of Points auf 10 geändert.

D.h. es werden nun 10 Bits => 2 Byte ausgelesen. Aus diesem Grund hat sich auch das Feldbuslängen Byte (2. Feldbusbyte) auf 0x0A, also um 1 Byte, erhöht.

Start bits	1			Device Id: 1		
Data bits	8					
Stop bits	1	Address:	0001	MUDBUS Point Type		Inputdata
Parity	None			02: INPUT STATUS	1	data(hex)
Baudrate	19200	Length:	20	1	-1	F1 0A 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
232 Interface	232				_1	F2 0A 00 00 00 00 00 00 00 00 95 03 00 00 00 00 00 00 00 00 00 00 00 00
Modhus Master Bequest						F3 0A 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
Modbus Timeout (10ms)	25				Ш	F4 0A 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
modbus milloux (noms)	2.5	10001: <0>	10011:	<0>		F5 0A 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
RX Poll Retry	0	10002. (0)	10012	(0)		F6 0A 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
RX Poll Delay (10ms)	0	10002: (0)	10012	-		EZ 04 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
		10003. (0)	10014	(1)	ш	E8 04 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
Ben 1 Slave ID	1	10004. (0)	10014.		ш	E9 04 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
Beg 1 Modbus Function	Read input status FC2	10005: (0)	10015: 1		ш	FA 04 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
	noon	10000: (0)	10016:			EB 04 00 00 00 00 00 00 00 00 85 03 00 00 00 00 00 00 00 00 00 00 00 00
Heg. I StartAdr [hex]	0006	10007: <1>	10017: •	<1>	-##	
Reg. 1 No. of Points (dec)	10	10008: <0>	10018: •	<0>	ш	
Reg. 1 Fieldbus Map Adr(Byte)	8	10009: <1>	10019: •	<0>		<u></u>
]	10010: <0>	10020: •	<0>	Ш	Monitor Data Diagnose DPV1_Async

10.4.3.3 Beispiel: Read multiple register FC3

Protocol	Universal Modbus RTU Master
Modbus Master Request	
Modbus Timeout (10ms)	25
RX Poll Retry	0
RX Poll Delay (10ms)	0
Reg. 1 Slave ID	1
Reg. 1 Modbus Function	Read multiple register FC3
Reg. 1 StartAdr (hex)	0001
Reg. 1 No. of Points (dec)	2
Reg. 1 Fieldbus Map Adr(Byte)	0

RX Poll Delay = 0 wird von der Firmware automatisch auf 1 gesetzt.

Modbus-Request:

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Slave ID	Modbus Function	StartAdr High	StartAdr Low	No. of Points High	No. of Points	CRC High	CRC Low
				i ligit	LOW		
1	3	0x00	0x01	0	2	х	у

Der CRC-Wert wird automatisch vom UNIGATE[®] errechnet

Das UNIGATE[®] sendet 1 mal (RX Poll Retry = 0) den Request über die RS Schnittstelle raus und wartet maximal 250 ms (Modbus Timeout = 25) auf den Response. Fieldbus Map Adr = 0 -> nicht aktiv Dabei hält der angesprochene Slave folgende Daten in seinen Registern vor:

Register		
Adresse	Wert(hex)	
40000	0x0000	
40001	0x0202	
40002	0x0303	
40003	0x0000	
40004	0x0000	

Register = 1 Word = 2 Byte

In manchen Anwendungen wird in der Dokumentation ein Offset + 1 bei der Adresse vorausgesetzt. Die Schreibweise für Adresse "40000" steht für "Holding Register. Real ist aber Adresse 0x0000 gemeint. Dies ist in den Modbus-Slave Dokumentationen nicht einheitlich. (Z.B. hat das PC Simulationstool "ModSim32" diesen Offset).

Wird ein gültiger Response empfangen, werden die vier Byte (No. Of Points = 2) Prozesswerte (Modbus-Data) auf den Feldbus, ab dem "Fieldbus Map Adr(Byte)" = 0 kopiert.

Feldbusdaten vom UNIGATE[®] -> SPS: 51 13 02 02 03 03 30 04 01 00 01 00 00 02 57 00 01 03 00 00 00 00 00 00 ...

- Byte 0 = Trigger-Byte "0x51"
- Byte 1 = Feldbuslängen-Byte "0x13"

Byte 2 = Prozesswert (High) aus StartAdr "0x02"

Byte 3 = Prozesswert (Low) aus StartAdr "0x02"

Byte 4 = Prozesswert (High) aus StartAdr + 1 "0x03"

Byte 5 = Prozesswert (Low) aus StartAdr + 1 "0x03"

10.4.3.4 Beispiel: Read input registers FC4

(siehe Kapitel 10.4.3.3, Beispiel: Read multiple register FC3)

10.4.3.5 Beispiel: Force single coil FC5

Bei FC5 wird ein Bit im Modbus Slave gesetzt, wenn das gemappte Feldbusbyte größer (>) NULL ist.

Konfiguration

Modbus Slave(Wirkung)

SPS sendet Feldbusdaten(Ursache)

		100004: <0>		
Reg. 1 Slave ID	1	00005: <0>	11 1	
Reg. 1 Modbus Function	Force single coil FC5 🧳	00006: <1> </th <th>ш</th> <th></th>	ш	
Reg. 1 StartAdr (hex)	0005	00007: <0>	11 1	03 00 00 00 00 00 00 00 FF 00 00 00 00 00
Reg. 1 No. of Points (doo)		00008: <0>	11 1	7
Reg. 1 Fieldbus Map Adr(Byte)	7	00009: <0>	Ш	

Hinweis: No. of Points wird nicht benötigt

Ein weiteres Beispiel wenn ein zweiter Request konfiguriert wird:

10.4.3.6 Beispiel: Preset single register FC6

Konfiguration

Reg. 1 Slave ID	1
Reg. 1 Modbus Function	Preset single register FC6
Req. 1 StartAdr (hex)	0005
Reg. 1 Fieldbus Map Adr(Byte)	7

SPS sendet zum UNIGATE®

UNIGATE[®] sendet Modbus RTU Request [01] [06] [00] [05] [ff] [23] [99] [e2]

Modbus Slave sendet Response [01] [06] [00] [05] [ff] [23] [99] [e2]

Speicherinhalt von Modbus Slave nach Response: 40001: <0000H> 40002: <0000H> 40003: <0000H> 40004: <0000H> 40005: <0000H> 40006: <FF23 +> 40007: <0000H> 40008: <0000H> 40008: <0000H> 40009: <0000H>

10.4.3.7 Beispiel: Force multiple coils FC15

Konfiguration

40010: <0000H>

Reg. 1 Slave ID	1
Reg. 1 Modbus Function	Force multiple coils FC15
Reg. 1 StartAdr (hex)	0002
Reg. 1 No. of Points (dec)	10
Reg. 1 Fieldbus Map Adr(Byte)	2

Feldbus Master sendet:

UNIGATE[®] sendet Request: [01] [0f] [00] [02] [00] [0a] [02] [ff] [05] [65] [29]

Modbus Slave sendet Response: [01] [0f] [00] [02] [00] [0a] [74] [0c] Speicherinhalt von Modbus Slave nach Response:

00001: <0>	00011: <1>
00002: <0>	00012: <0>
00003: <1>	00013: <0>
00004: <1>	00014: <0>
00005: <1>	00015: <0>
00006: <1>	00016: <0>
00007: <1>	00017: <0>
00008: <1>	00018: <0>
00009: <1>	00019: <0>
00010: <1>	00020: <0>

Hex	FF	05
Bin		00000101
Position	87654321	11 10 9

Bitte beachten sie das No. Of coils = 10 ist, deswegen wird bei dem Wert 0x05 nur das untere Bit in Adresse 0011 geschrieben, Adress 0013 wäre schon das Bit Nr 11 das nicht mehr übertragen wird.

10.4.3.8 Beispiel: Preset multiple register FC16

Konfiguration

Reg. 1 Slave ID	1
Reg. 1 Modbus Function	Preset multiple register FC16
Reg. 1 StartAdr (hex)	0002
Reg. 1 No. of Points (dec)	10
Reg. 1 Fieldbus Map Adr(Byte)	2

Feldbus Master sendet:

BA 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 ...

UNIGATE[®] sendet Request: [01] [10] [00] [02] [00] [0a] [14] [01] [02] [03] [04] [05] [06] [07] [08] [09] [0a] [0b] [0c] [0d] [0e] [0f]... ... [10] [11] [12] [13] [14] [3d] [e4]

Modbus Slave sendet Response: [01] [10] [00] [02] [00] [0a] [e1] [ce]

Speicherinhalt von Modbus Slave nach Response:

40001: <0000H>
40002: <0000H>
40003: <0102H>
40004: <0304H>
40005: <0506H>
40006: <0708H>
40007: <090AH>
40008: <0B0CH>
40009: <0D0EH>
40010: <0F10H>
40011: <1112H>
40012: <1314H>
40013: <0000H>

10.5 Protokoll "Universal Modbus ASCII Master/Slave"

Der Feldbusdatenaustausch für Modbus ASCII ist identisch mit RTU. Das UNIGATE[®] überträgt automatisch auf der seriellen Seite die Daten im ASCII Format.

Protokollbeschreibung siehe Kapitel 10.3, Protokoll "Universal Modbus RTU Slave" bzw. Kapitel 10.4., Protokoll "Universal Modbus RTU Master".

10.6 Protokoll SSI

Mit dem Protokoll SSI können z.B. SSI-Geber mit dem UNIGATE[®] ausgewertet werden und diese Informationen an die übergeordnete Steuerung weitergeleitet werden. Über Parameter können, der Geber-Type, die Geber-Auflösung, die Taktfrequenz und eine ERROR-Bit (wenn unterstützt) entsprechend dem eingesetzten SSI-Geber konfiguriert werden. Siehe auch Kapitel 6 (SSI-Schnittstelle).

10.7 Das Triggerbyte

Ändern sich die von der Applikation an das Gateway gelieferten Datensätze über einen längeren Zeitraum nicht, so besteht eigentlich keine Notwendigkeit an den Master neue Daten zu senden. Umgekehrt muss ein angeschlossener Master bei zyklischer Abfrage des Gateways unterscheiden können, ob die Applikation ständig die gleichen Daten liefert oder ob von der Applikation über einen längeren Zeitraum keine neuen Daten geliefert wurden. Aus diesem Grund kann der Anwender einstellen, dass er über ein Triggerbyte das Senden steuern will (Data exchange -> On Trigger). In diesem Modus sendet das Gateway immer (und nur dann), wenn das Triggerbyte verändert wird.

Entsprechend kann im normalen Modus das Anwendungsprogramm in der Steuerung nicht erkennen, ob das Gateway mehrere gleiche Telegramme empfangen hat. Wenn der Triggerbyte-Modus eingeschaltet ist, inkrementiert das Gateway das Triggerbyte jedesmal, wenn ein Telegramm empfangen wurde.

Als Triggerbyte wird das erste Byte im Ein-/Ausgangsdatenpuffer verwendet, wenn dieser Modus eingeschaltet ist.

10.8 Das Längenbyte

Es kann konfiguriert werden, ob die Sendelänge als Byte im Ein-/Ausgangsdatenbereich mit abgelegt wird (Fieldbus lengthbyte \rightarrow active). In Senderichtung werden soviele Bytes verschickt, wie in diesem Byte angegeben sind. Beim Empfang eines Telegramms trägt das Gateway die Anzahl empfangener Zeichen ein.

11 Hardware-Anschlüsse, Schalter und Leuchtdioden

11.1 Gerätebeschriftung

Bild 1: Anschlussbeschriftung und Terminierung

Bild 2: Frontblende: Drehschalter, Leuchtanzeigen und Terminierung MPI

Sollte die Frontblende herausspringen, so hat dies keinen Einfluss auf die Funktion oder die Qualität des Gerätes. Sie kann einfach wieder eingesetzt werden.

11.2 Stecker

11.2.1 Stecker zum externen Gerät (RS-Schnittstelle)

An dem an der Oberseite des Gerätes zugänglichen Stecker ist die serielle Schnittstelle verfügbar.

Pin Nr.	Name	Funktion	
1	Rx 232	Empfangssignal	
2	Tx 232	Sendesignal	
3	AP-GND	Applikation Ground	
4	Rx 422+ (485+)	Empfangssignal	
5	Rx 422- (485-)	Empfangssignal	
6	Tx 422+ (485+)	Sendesignal	
7	Tx 422- (485-)	Sendesignal	

Für den Betrieb an einer 485-Schnittstelle müssen die beiden Pins mit der Bezeichnung "485-" zusammen angeschlossen werden. Ebenso die beiden Pins "485+".

11.2.2 Stecker Versorgungsspannung und DEBUG-Schnittstelle

Pinbelegung X2 (4pol. Schraub-Steckverbinder; an der Unterseite, hinten)

Pin Nr.	Name	Funktion
1	UB (Pwr)	1033 Volt Versorgungsspannung / DC
2	0 V (Pwr)	0 Volt Versorgungsspannung / DC
3	Rx-Debug	Empfangssignal Debug
4	Tx-Debug	Sendesignal Debug

Achtung:

Der Ground für die DEBUG-Schnittstelle muss bei Geräten mit Potentialtrennung (Option GT) mit Pin 3 (AP-GND) der RS-Schnittstelle verbunden werden!

Bei Geräten ohne Potentialtrennung kann als Bezug auch das 0V (Pwr) DC-Signal verwendet werden.

11.2.3 MPI-Bus-Stecker

An der Vorderseite des Gerätes ist der Stecker (Beschriftung: MPI) zum Anschluss an den MPI-Bus.

Pinbelegung (9-pol. D-SUB Buchse)

Pin Nr.	Name	Funktion
1	Schirm	
2		
3	В	nicht invertierendes Ein-/Ausgangssignal von MPI-Bus
4	CNTR-P	Steuersignal / Repeater
5	M5	DGND - Datenbezugspotential
6	P5	5 V Versorgungsspannung
7		
8	A	invertierendes Ein-/Ausgangssignal von MPI-Bus
9		

11.2.4 Stromversorgung

Das Gerät ist mit 10-33 VDC zu versorgen. Die Spannungsversorgung erfolgt über den 4pol. Schraub-/Steckverbinder an der Unterseite.

Bitte beachten Sie, dass Geräte der Serie UNIGATE[®] nicht mit Wechselspannung (AC) betrieben werden sollten.

11.3 Leuchtanzeigen

Das Gateway UNIGATE[®] CL - MPI verfügt über 9 LEDs mit folgender Bedeutung:

LED (Bus) Power	grün	Versorgungsspannung MPI-Bus
LED Bus	grün	MPI-Bus Sync.
LED (Bus) State	rot/grün	Schnittstellenzustand MPI-Bus
LED Power	grün	Versorgungsspannung serielle Schnittstelle
LED State	rot/grün	benutzerdefiniert / allgemeiner Gatewayfehler
LED 1 / 2 / 4 / 8 (Error No / Select ID)	grün	benutzerdefiniert / allgemeiner Gatewayfehler

11.3.1 LED "(Bus) Power"

Diese LED ist direkt mit der (potentialgetrennten) Versorgungsspannung der MPI-Seite verbunden.

11.3.2 LED "Bus"

Diese LED wird direkt vom MPI-Bus-ASIC angesteuert und signalisiert, dass sich der MPI-Bus im Zustand "DATA Sync." befindet.

11.3.3 LED "(Bus) State"

grün leuchtend	MPI-Bus im Zustand Datenaustausch "Data Sync."
grün blinkend	Gateway wartet auf MPI-Bus-Konfigurationsdaten bzw. Datenaustausch unterbrochen
grün/rot blinkend	Bus nicht initialisiert (Scriptbefehl "Bus Start" nicht ausgeführt)
rot leuchtend	allgemeiner MPI-Bus-Fehler

11.3.4 LED "Power"

Diese LED ist direkt mit der (optional auch potentialgetrennten) Versorgungsspannung der seriellen Schnittstelle (RS232/422/485) verbunden.

11.3.5 LED "State"

grün leuchtend	Datenaustausch aktiv über RS422/RS485/RS232; über Script steuerbar
grün blinkend	RS422/RS485/RS232 O.K., aber kein ständiger Datenaustausch; über Script steuerbar
grün/rot blinkend	Noch kein Datenaustausch seit Einschalten; über Script steuerbar
rot leuchtend	allgemeiner Gatewayfehler (s. LEDs Error No.), über Script steuerbar
rot blinkend	UNIGATE befindet sich im Konfigurations-/Testmodus, über Script steuerbar

11.3.6 LEDs 1 / 2 / 4 / 8 (Error No / Select ID)

Blinken diese 4 LEDs und die LED "State" leuchtet gleichzeitig rot, wird binärcodiert (Umrechnungstabelle siehe Anhang) gemäß der Tabelle im Kapitel "Fehlerbehandlung" die Fehlernummer angezeigt.

11.4 Schalter

Das Gateway verfügt über 7 Schalter mit folgenden Funktionen:

schaltbarer Rx 422-Abschlusswiderstand für die serielle Schnittstelle
schaltbarer Tx 422- bzw. RS485-Abschlusswiderstand für die serielle
Schnittstelle
ID High für serielle Schnittstelle z. B. Konfigmode
ID Low für serielle Schnittstelle z. B. Konfigmode
schaltbarer MPI-Bus-Abschlusswiderstand
MPI-Bus-ID (High Byte)
MPI-Bus-ID (Low Byte)

11.4.1 Termination Rx 422 + Tx 422 (serielle Schnittstelle)

Wird das Gateway als physikalisch erstes oder letztes Gerät in einem RS485-Bus bzw. als 422 betrieben, muss an diesem Gateway ein Busabschluss erfolgen. Dazu wird der Terminationschalter auf ON gestellt. Der im Gateway integrierte Widerstand (150 Ω) wird aktiviert. In allen anderen Fällen bleibt der Schalter auf der Position OFF.

Nähere Information zum Thema Busabschluss finden Sie in der allgemeinen RS485 Literatur. Wird der integrierte Widerstand verwendet ist zu berücksichtigen, dass damit automatisch ein Pull-Down-Widerstand (390 Ω) nach Masse und ein Pull-Up-Widerstand (390 Ω) nach VCC aktiviert wird.

Bei RS485 darf nur der Tx 422-Schalter auf ON gestellt werden. Der Rx 422-Schalter muss auf OFF stehen.

11.4.2 Drehcodierschalter S4 + S5 (serielle Schnittstelle)

Diese beiden Schalter können über den Scriptbefehl "Get (RS_Switch, Destination)" ausgelesen und der Wert für weitere Funktionen weiter verwendet werden. Dieser Wert wird beim Einschalten des Gateways bzw. immer wieder nach Ausführen des Scriptbefehls eingelesen. Die Schalterstellung "EE" (testmode) und "FF" (config mode) sind bei der RS422- oder RS485-Betrieb nicht möglich.

Hinweis: Die Schalterstellung "DD" (d.h. S4 und S5 beide in Stellung "D") ist für interne Zwecke reserviert.

11.4.3 Termination (MPI)

Wird das Gateway als physikalisch erstes oder letztes Gerät im MPI-Bus betrieben, muss an diesem Gateway ein Busabschluss erfolgen. Dazu muss entweder ein Busabschlusswiderstand im Stecker oder der im Gateway integrierte Widerstand (220Ω) aktiviert werden. Dazu wird der Schiebeschalter auf die Position ON geschoben. In allen anderen Fällen bleibt der Schiebeschalter auf der Position OFF.

Hinweis: Um den Busabschluss zu aktivieren bzw. deaktivieren, bitte den Bus-Stecker abziehen und den Schalter vorsichtig in die gewünschte Position bringen.

11.4.4 Drehcodierschalter High + Low (MPI-Bus-ID)

Über diese beiden Schalter wird der MPI-Bus-ID (00...1F) des Gateways hexadezimal eingestellt. Eine Umrechnungstabelle von Dezimal nach Hexadezimal befindet sich im Anhang. Dieser Wert wird nur einmalig beim Einschalten des Gateways eingelesen. Der Wert kann auch über den Scriptbefehl "Get (FieldbusID, LongTemp) " ausgelesen bzw. ausgewertet werden. Siehe auch Kapitel 16.6.

11.5 Debug-Kabel für UNIGATE® CL

Als Zubehör ist ein vorkonfiguriertes Debugkabel erhältlich. Das Debug Kabel verbindet das Gateway zu Debug und RS.

12 Fehlerbehandlung

12.1 Fehlerbehandlung beim UNIGATE[®] CL

Erkennt das Gateway einen Fehler, so wird dieser dadurch signalisiert, dass die LED "State" rot leuchtet und gleichzeitig die Fehlernummer gemäß nachfolgender Tabelle über die LEDs "Error No" angezeigt werden. Es können zwei Fehlerkategorien unterschieden werden:

Schwere Fehler (1-5): In diesem Fall muss das Gateway aus- und wieder neu eingeschaltet werden. Tritt der Fehler erneut auf, muss das Gateway getauscht und zur Reparatur eingeschickt werden.

Warnungen (6-15): Diese Warnungen werden lediglich zur Information 1 Minute lang angezeigt und werden dann automatisch zurückgesetzt. Treten diese Warnungen häufiger auf, ist der Kundendienst zu verständigen.

				Fehlernr.	
LED8	LED4	LED2	LED1	bzw. ID	Fehlerbeschreibung
0	0	0	0	0	Reserviert
0	0	0	1	1	Hardwarefehler
0	0	1	0	2	EEROM-Fehler
0	0	1	1	3	Interner Speicherfehler
0	1	0	0	4	Feldbus Hardwarefehler oder falsche Feldbus ID
0	1	0	1	5	Script-Fehler
0	1	1	0	6	Reserviert
0	1	1	1	7	RS Sende-Puffer-Überlauf
1	0	0	0	8	RS Empfangs-Puffer-Überlauf
1	0	0	1	9	RS Timeout
1	0	1	0	10	Allgemeiner Feldbusfehler
1	0	1	1	11	Parity- oder Frame-Check-Fehler
1	1	0	0	12	Reserviert
1	1	0	1	13	Feldbus Konfigurationsfehler
1	1	1	0	14	Feldbus Datenpuffer-Überlauf
1	1	1	1	15	Reserviert

Im Konfigurationsmodus sind diese Anzeigen nicht gültig und nur für interne Zwecke bestimmt.

Tabelle 1: Fehlerbehandlung beim UNIGATE[®] CL - Systemfehler

Blinkfrequenz 2-Mal pro Sekunde (Systemfehler)

LED8	LED4	LED2	LED1	Fehlernr.	Protokoll	Fehlerbeschreibung
0	0	1	1	3	alle Protokolle	keine Universalscript Unterstüt- zung
0	1	0	1	5	alle Protokolle	Unbekanntes Protokoll
1	0	0	1	9	Modbus RTU Master Modbus ASCII Master	Timeout-Modbus Slave Teilnehmer hat nicht innerhalb der festgesetzten Zeit (Reponsetime) geantwortet.
					Modbus RTU Slave Universal Modbus RTU Slave	Timeout bei Response-Sendung
					3964(R)	Timeout - keine Antwort von Teil- nehmer
1	0	1	1	11	Universal 232 (mit 232 Checksum)	Checksumme von Empfang stimmt nicht mit nachgerechneter überein.
					Modbus RTU Slave Universal Modbus RTU Slave	Unbekannter Fehler nach Response-Sendung
					3964(R)	Fehler bei Datenaustausch (z.B. Checksummenfehler)
1	1	0	0	12	Universal Modbus RTU Master	Error in Response von Funktions- code
1	1	0	0	12	SSI	Fehler bei SSI Kommunikation
1	1	1	1	15	Modbus RTU Master Modbus ASCII Master	Allgemeiner Empfangsfehler bei Modbus (ASCII) Exchange, z.B. Checksummenfehler
1	1	1	0	14	Modbus RTU Slave	Exception Response
1	1	1	1	15	alle Protokolle	interner Fehler bei Prozessdaten- verarbeitung

Tabelle 2: Protokollbezogene Fehler

Blinkfrequenz 1-Mal pro Sekunde (benutzerdefinierte Fehler bzw. protokollbezogene Fehler).

Hinweis: Der Fehler wird solange angezeigt wie mit "Set Warning Time" definiert ist.

13 Aufbaurichtlinien

13.1 Montage der Baugruppe

Die Baugruppe mit den max. Abmessungen (23x117x111mm BxHxT) ist für den Schaltschrankeinsatz (IP20) entwickelt worden und kann deshalb nur auf einer Normprofilschiene (tiefe Hutschiene nach EN50022) befestigt werden.

13.1.1 Montage

- Die Baugruppe wird von oben in die Hutschiene eingehängt und nach unten geschwenkt bis die Baugruppe einrastet.
- Links und rechts neben der Baugruppe dürfen andere Baugruppen aufgereiht werden.
- Oberhalb und unterhalb der Baugruppe müssen mindestens 5 cm Freiraum für die Wärmeabfuhr vorgesehen werden.
- Die Normprofilschiene muss mit der Potentialausgleichschiene des Schaltschranks verbunden werden. Der Verbindungsdraht muss einen Querschnitt von mindestens 10 mm² haben.

13.1.2 Demontage

- Zuerst müssen die Versorgungs- und Signalleitungen abgesteckt werden.
- Danach muss die Baugruppe nach oben gedrückt und die Baugruppe aus der Hutschiene herausgeschwenkt werden.

Senkrechter Einbau

Die Normprofilschiene kann auch senkrecht montiert werden, so dass die Baugruppe um 90° gedreht montiert wird.

13.2 Verdrahtung

13.2.1 Anschlusstechniken

Folgende Anschlusstechniken müssen bzw. können Sie bei der Verdrahtung der Baugruppe einsetzen:

- Standard-Schraub-/Steck-Anschluss (Versorgung + RS)
- 9-pol. D-SUB Steckverbinder (MPI-Bus)
- a) Bei den Standard-Schraubklemmen ist eine Leitung je Anschlusspunkt klemmbar. Zum Festschrauben benutzen Sie am besten einen Schraubendreher mit Klingenbreite 3,5 mm.

Zulässige Querschnitte der Leitung:

 Flexible Leitung mit Aderendhülse: 	1 x 0,25 1,5 mm²
Massive Leitung:	1 x 0,25 1,5 mm²
 Anzugsdrehmoment: 	0,5 0,8 Nm

- b) Die steckbare Anschlussklemmleiste stellt eine Kombination aus Standard-Schraubanschluss und Steckverbinder dar. Der Steckverbindungsteil ist kodiert und kann deshalb nicht falsch aufgesteckt werden.
- c) Der 9-polige D-SUB Steckverbinder wird mit zwei Schrauben mit "4-40-UNC"-Gewinde gesichert. Zum Festschrauben benutzen Sie am besten einen Schraubendreher mit Klingenbreite 3,5 mm.

Anzugsdrehmoment: 0,2 ...0,4 Nm

13.2.1.1 Stromversorgung

Das Gerät ist mit 10..33VDC zu versorgen.

• Schließen Sie die Versorgungsspannung an die 4-polige Steckschraubklemme entsprechend der Beschriftung auf dem Gerät an.

13.2.1.2 Anschluss des Potentialausgleichs

Die Verbindung zum Potentialausgleich erfolgt automatisch beim Aufsetzen auf die Hutschiene.

13.2.2 Kommunikationsschnittstelle MPI-Bus

13.2.2.1 Busleitung mit Kupferkabel

Diese Schnittstelle finden Sie auf der Baugruppe in Form einer 9-poligen D-SUB-Buchse an der Frontseite des Gehäuses.

- Stecken Sie den MPI-Bus-Verbindungsstecker in die D-SUB-Buchse mit der Beschriftung "MPI".
- Schrauben Sie die Sicherungsschrauben des Verbindungsstecker mit einem Schraubendreher fest.
- Befindet sich die Baugruppe am Anfang oder am Ende der MPI-Bus-Leitung, so müssen Sie den im Gateway integrierten Busabschlusswiderstand zuschalten. Schieben Sie dazu den Schiebeschalter in die Stellung mit der Beschriftung ...on...

Befindet sich die Baugruppe nicht am Anfang oder am Ende, so müssen Sie den Schiebeschalter in die Stellung "off" schieben.

13.2.3 Leitungsführung, Schirmung und Maßnahmen gegen Störspannung

Gegenstand dieses Kapitels ist die Leitungsführung bei Bus-, Signal- und Versorgungsleitungen mit dem Ziel, einen EMV-gerechten Aufbau Ihrer Anlage sicherzustellen.

13.2.4 Allgemeines zur Leitungsführung

- innerhalb und außerhalb von Schränken

Für eine EMV-gerechte Führung der Leitungen ist es zweckmäßig, die Leitungen in folgende Leitungsgruppen einzuteilen und diese Gruppen getrennt zu verlegen.

 \Rightarrow Gruppe A:• geschirmte Bus- und Datenleitungen z.B. für MPI-Bus, RS232C, Drucker, etc.

- geschirmte Analogleitungen
- ungeschirmte Leitungen für Gleichspannungen \ge 60 V
- ungeschirmte Leitungen für Wechselspannung ≥ 25 V
- Koaxialleitungen für Monitore
- \Rightarrow Gruppe B:• ungeschirmte Leitungen für Gleichspannungen \ge 60 V und \ge 400 V
 - ungeschirmte Leitungen für Wechselspannung \ge 24 V und \ge 400 V
- \Rightarrow Gruppe C:• ungeschirmte Leitungen für Gleichspannungen > 400 V

Anhand der folgenden Tabelle können Sie durch die Kombination der einzelnen Gruppen die Bedingungen für das Verlegen der Leitungsgruppen ablesen.

	Gruppe A	Gruppe B	Gruppe C
Gruppe A	1	2	3
Gruppe B	2	1	3
Gruppe C	3	3	1

Tabelle: Leitungsverlegevorschriften in Abhängigkeit der Kombination von Leitungsgruppen

- 1) Leitungen können in gemeinsamen Bündeln oder Kabelkanälen verlegt werden.
- 2) Leitungen sind in getrennten Bündeln oder Kabelkanälen (ohne Mindestabstand) zu verlegen.
- Leitungen sind innerhalb von Schränken in getrennten Bündeln oder Kabelkanälen und außerhalb von Schränken aber innerhalb von Gebäuden auf getrennten Kabelbahnen mit mindestens 10 cm Abstand zu verlegen.

13.2.4.1 Schirmung von Leitungen

Das Schirmen ist eine Maßnahme zur Schwächung (Dämpfung) von magnetischen, elektrischen oder elektromagnetischen Störfeldern.

Störströme auf Kabelschirmen werden über die mit dem Gehäuse leitend verbundene Schirmschiene zur Erde abgeleitet. Damit diese Störströme nicht selbst zu einer Störquelle werden, ist eine impedanzarme Verbindung zum Schutzleiter besonders wichtig.

Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht. Die Deckungsdichte des Schirmes sollte mehr als 80% betragen. Vermeiden Sie Leitungen mit Folienschirm, da die Folie durch Zug- und Druckbelastung bei der Befestigung sehr leicht beschädigt werden kann; die Folge ist eine Verminderung der Schirmwirkung.

In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich.

Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigeren Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn,

- die Verlegung einer Potentialausgleichsleitung nicht durchgeführt werden kann
- Analogsignale (einige mV bzw. mA) übertragen werden
- Folienschirme (statische Schirme) verwendet werden.

Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse.

Bei Potentialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen. Verlegen Sie in diesem Fall eine zusätzliche Potentialausgleichsleitung.

Beachten Sie bei der Schirmbehandlung bitte folgende Punkte:

- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall- Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zur Baugruppe weiter; legen Sie ihn dort jedoch nicht erneut auf!

14 Darstellung der Daten in einer S7

Jedes MPI-Gerät (z. B. S7-300) kann Daten mit dem Gateway austauschen. Wegen des Datenaufbaus können auch sehr "einfache" Masteranschaltungen verwendet werden.

14.1 Datenaustausch

Nachdem die SPS erkennt, dass ein Busteilnehmer für den Datenaustausch bereit ist, können Daten ausgetauscht werden. Die Daten in Ein- / Ausgangsrichtung werden vom Gateway bestimmt, es muss die Daten über best. Funktionsbausteine holen bzw. bereitstellen.

15 Technische Daten

15.1 Gerätedaten

In der nachfolgenden Tabelle finden Sie die technischen Daten der Baugruppe.

Nr.	Parameter	Daten	Erläuterungen
1	Einsatzort	Schaltschrank	Hutschienenmontage
2	Schutzart	IP20	Fremdkörper und Wasserschutz nach IEC 529 (DIN 40050)
4	Lebensdauer	10 Jahre	
5	Gehäusegröße	23 x 117 x 111 mm (inkl. Schraub-Steckverbinder) 23 x 117 x 100 mm (ohne Schraub-Steckverbinder)	ВхТхН
6	Einbaulage	Beliebig	
7	Gewicht	123 g	
8	Betriebstemperatur	-40°C +85°C	
9	Lager-/Transporttemperatur	-40°C +85°C	
10	Luftdruck bei Betrieb bei Transport	795 hPa 1080hPa 660 hPa 1080hPa	
11	Aufstellungshöhe	2000 m 4000 m	Ohne Einschränkungen mit Einschränkungen - Umgebungstemperatur ≤ 40ºC
12	Relative Luftfeuchte	Max. 80 %	Nicht kondensierend, keine korrosive Atmosphäre
14	Externe Versorgungsspannung	1033V DC	Standardnetzteil nach DIN 19240
15	Stromaufnahme bei 24VDC	Typ. 60 mA max 70 mA	(bei 10VDC) max. 155 mA
16	Versorgung an der MPI-Bus-Schnittstelle	5V DC / max. 50 mA	(Max. 50 mA bei < 30°C Umgebungstemperatur)
17	Verpolungsschutz	Ja	Gerät funktioniert jedoch nicht!
18	Kurzschlussschutz	Ja	
19	Überlastschutz	Poly-Switch	Thermosicherung
20	Unterspannungserkennung (USP)	≤9V DC	
21	Spannungsausfall- Überbrückung	≥ 5 ms	Gerät voll funktionsfähig

Tabelle: Technische Daten der Baugruppe

15.1.1 Schnittstellendaten

In der nachfolgenden Tabelle sind technische Daten der auf dem Gerät vorhandenen Schnittstellen aufgelistet. Die Daten sind den entsprechenden Normen entnommen.

	Schnittstellenbezeichnung	MPI-Bus	RS232-C	RS485/RS422
Nr	physikalische Schnittstelle	RS485	RS232-C	RS485/RS422
1	Norm	EIA-Standard	DIN 66020	EIA-Standard
2	Übertragungsart	symmetrisch	asymmetrisch	symmetrisch
		asynchron	asynchron	asynchron
		seriell	seriell	seriell
		halbduplex	vollduplex	halbduplex
				vollduplex bei RS422
		→ Differenzsignal	\rightarrow Pegel	
				\rightarrow Differenzsignal
3	Übertragungsverfahren	Master / Master	Master / Slave	Master / Slave
4	Teilnehmerzahl:- Sender	32	1	32
	- Empfänger	32	1	32
5	Kabellänge:		15 m	1200 m
	- baudratenabhängig	187,5 kBd → 1000 m	nein	$< 93,75 \text{ kBd} \rightarrow 1200 \text{ m}$
				312, kBd \rightarrow 500 m
				$625 \text{ kBd} \rightarrow 250 \text{ m}$
_				
6	Bus-Iopologie		Pktzu-Pkt.	Linie
1	Datenrate: - maximal	12 MDIt/s	120 KBIt/s	625 KBaud
		0.6 kBit/c	2 4 k/B	2.4 kBit/c
			2,4 N/D 1 9 L/D	2,4 KDIUS
		19,2 KDIUS	4,0 N/D	
		187.5 kBit/s Standard	10.2 kBit/s	10.2 kBit/c
		$500 \text{ kBit/s} \rightarrow 51andard$	38 / kBit/s	57.6 kB
		1 5 Mbit/s	50,4 KDIVS	312.5 kB
		3 MBit/c		625 kB
		6 MBit/s		023 KD
		12 Mbit/s		
8	Sender: - Belastung	54 0	3 7 kO	54 0
U	- max Spannung	-7. 12.	+ 25 \/	-7V 12V
	- Signal ohne Belastung	+ 5 \/	± 25 V + 15 V	+ 5 V
	- Signal mit Belastung	+ 1 5 V	± 13 V	+ 1 5 V
9	Empfänger: - Eingangswiderstand	12 Ω	37Ω	12 Ω
-	- max. Eingangssignal	- 7 V 12 V	± 15 V	- 7 V 12 V
1	- Empfindlichkeit	± 0,2 V	± 3 V	± 0,2 V
10	Sendebereich (SPACE):- Spgspegel	- 0,2 + 0,2 V	+ 3 + 15 V	- 0,2 + 0,2 V
1	- Logikpegel	0	0	0
11	Sendepause (MARK): - Spgspegel	+ 1,5 +5 V	- 3 –15 V	+ 1,5 +5 V
1	- Logikpegel	1	1	1

Tabelle: Technische Daten der an der Baugruppe vorhandenen Schnittstellen

16 Inbetriebnahmeleitfaden

16.1 Beachte

Die Inbetriebnahme des UNIGATE[®] darf nur von geschultem Personal unter Beachtung der Sicherheitsvorschriften durchgeführt werden.

16.2 Komponenten

Zur Inbetriebnahme des UNIGATE[®] benötigen Sie folgende Komponenten:

- UNIGATE[®]
- Verbindungskabel vom Gateway zum Prozess hin
- Verbindungsstecker für den MPI-Bus-Anschluss an das Gateway
- MPI-Bus-Kabel (Dieses Kabel ist in der Regel bereits vorort installiert!)
- 10..33 VDC-Spannungsversorgung (DIN 19240)
- Das Handbuch kann kostenfrei aus dem Internet unter **www.deutschmann.de** bezogen werden

16.3 Montage

Die Baugruppe UNIGATE[®] CL-MPI hat die Schutzart IP20 und ist somit für den Schaltschrankeinsatz geeignet. Das Gerät ist für das Aufschnappen auf eine 35 mm Hutprofilschiene ausgelegt.

16.4 Maßzeichnung UNIGATE[®] CL-MPI

16.5 Inbetriebnahme

Um ein ordnungsgemäßes Arbeiten der Baugruppe zu gewährleisten, müssen Sie folgende Schritte bei der Inbetriebnahme unbedingt durchführen:

16.6 MPI-Bus-Adresse einstellen

Vorgehensweise:

Stellen Sie an der Feldbusseite der Baugruppe an den beiden Drehschaltern mit der Bezeichnung "High" und "Low" die MPI-Bus-Adresse ein. Diese Einstellung erfolgt hexadezimal. Beispiel:

Die MPI-Bus-ID ist 26 dezimal = 1A hexadezimal

Der Schalter "High" muss auf 1 und der Schalter "Low" muss auf A gestellt werden.

Achtung: Die eingestellte MPI-Bus-Adresse darf nur einmal im MPI-Bus vorkommen.

Sie wird nur beim Einschalten des Gateways eingelesen!

16.7 MPI-Bus Anschluss

Verbinden Sie das Gerät mit dem MPI-Bus an der Schnittstelle mit der Bezeichnung "MPI".

16.8 Anschluss des Prozessgerätes.

Zur Inbetriebnahme des Prozessgerätes lesen Sie bitte auch dessen Betriebsanleitung.

16.9 Versorgungsspannung anschließen

Schließen Sie bitte 10..33 V Gleichspannung an die dafür vorgesehenen Klemmen an.

16.10 Schirmanschluss

Erden Sie die Hutschiene, auf der die Baugruppe aufgeschnappt wurde.

16.11 Literaturhinweis

Zum schnellen und intensiven Einstieg in die Thematik der SPS wird das Buch "Crashkurs S7 mit CD" empfohlen. Das Buch ist über den VDE Verlag beziehbar (ISBN: 3-8007-2377-8).

17 Service

Sollten einmal Fragen auftreten, die in diesem Handbuch nicht beschrieben sind, finden Sie im

• FAQ/Wiki Bereich unserer Homepage www.deutschmann.de oder www.wiki.deutschmann.de weiterführende Informationen.

Falls dennoch Fragen unbeantwortet bleiben sollten wenden Sie sich direkt an uns.

Bitte halten Sie für Ihren Anruf folgende Angaben bereit:

- Gerätebezeichnung
- Seriennummer (S/N)
- Artikel-Nummer
- Fehlernummer und Fehlerbeschreibung

Ihre Anfragen werden im Support Center aufgenommen und schnellstmöglich von unserem Support Team bearbeitet. (In der Regel innerhalb 1 Arbeitstag, selten länger als 3 Arbeitstage.)

Der technische Support ist erreichbar von Montag bis Donnerstag von 8.00 bis 12.00 und von 13.00 bis 16.00, Freitag von 8.00 bis 12.00 (MEZ).

Deutschmann Automation GmbH & Co. KG Carl-Zeiss-Straße 8 D-65520 Bad-Camberg

Zentrale und Verkauf	+49 6434 9433-0
Technischer Support	+49 6434 9433-33
Fax Verkauf	+49 6434 9433-40
Fax Technischer Support	+49 6434 9433-44

Email Technischer Support support@deutschmann.de

17.1 Einsendung eines Gerätes

Bei der Einsendung eines Gerätes benötigen wir eine möglichst umfassende Fehlerbeschreibung. Insbesonders benötigen wir die nachfolgenden Angaben:

- Welche Fehlernummer wurde angezeigt
- Wie groß ist die Versorgungsspannung (±0,5V) mit angeschlossenem Gateway
- Was waren die letzten Aktivitäten am Gerät (Programmierung, Fehler beim Einschalten, ...)

Je genauer Ihre Angaben und Fehlerbeschreibung, umso exakter können wir die möglichen Ursachen prüfen.

17.2 Download von PC-Software

Von unserem Internet-Server können Sie kostenlos aktuelle Informationen und Software laden.

http://www.deutschmann.de

18 Anhang

18.1 Erläuterung der Abkürzungen

Allgemei	n	
CL	=	Produktgruppe CL (Compact Line)
CM	=	Produktgruppe CM (CANopen Line)
CX	=	Produktgruppe CX
EL	=	Produktgruppe EL (Ethernet Line)
FC	=	Produktgruppe FC (Fast Connect)
GT	=	Galvanische Trennung RS-Seite
GY	=	Gehäusefarbe grau
MB	=	Produktgruppe MB
RS	=	Produktgruppe RS
SC	=	Produktgruppe SC (Script)
232/485	=	Schnittstelle RS232 und RS485 umschaltbar
232/422	=	Schnittstelle RS232 und RS422 umschaltbar
DB	=	zusätzlich eine RS232 DEBUG-Schnittstelle
D9	=	Anschluss der RS über 9pol. D-SUB statt 5pol. Schraub-Steckverbinder
PL	=	Nur Platine ohne DIN-Schienenmodul und ohne Gehäusedeckel
PD	=	Nur Platine ohne DIN-Schienenmodul mit Gehäusedeckel
AG	=	Gateway montiert im Aludruckgussgehäuse
EG	=	Gateway montiert im Edelstahlgehäuse
IC	=	Produktgruppe IC (IC-Bauform DIL32)
IC2	=	Produktgruppe IC2 (IC-Bauform DIL32)
108	=	Option I/O8
16	=	Scriptspeicher auf 16KB erweitert
5V	=	Betriebsspannung 5V
3,3V	=	Betriebsspannung 3,3V
Feldbus		
СО	=	CANopen
C4	=	CANopen V4
C4X	=	CANopen V4-Variante X (siehe Vergleichstabelle UNIGATE® IC beim jeweiligen
		Produkt)
DN	=	DeviceNet
EC	=	EtherCAT
EI	=	EtherNet/IP
FE	=	Ethernet 10/100 MBit
FEX	=	Ethernet 10/100 MBit-Variante X (siehe Vergleichstabelle UNIGATE [®] IC beim
		jeweiligen Produkt)
IB	=	Interbus
IBL	=	Interbus
LN62	=	LONWorks62
LN512	=	LONWorks512
ModTCP	=	ModbusTCP
MPI	=	Siemens MPI [®]
PL	=	Powerlink
PBDPX	=	ProfibusDP-Variante X (siehe Vergleichstabelle UNIGATE [®] IC beim ieweiligen
		Produkt)
PBDPV0	=	Profibus DPV0
-		

PBDPV1 = ProfibusDPV1 RS = Serial RS232/485/422

18.2 Hexadezimal-Tabelle

Hex	Dezimal	Binär
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111